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1 Introduction

The homogeneous singular integral operator T, is defined by
Qlx—y
Tof(@) = po. [ =D 1),
re |2 — Y
where Q € L}(S"™1) satisfies the following conditions:

(a) € is homogeneous function of degree zero on R™ \ {0}, i.e.
Qtz) = Qz) for any t > 0 and x € R™\{0}. (1.1)
(b) € has mean zero on S"~!, the unit sphere in R", i.e.

/ Q') do(z') = 0. (1.2)
Sn—l

For a function b € Lj,.(R™), let A be a linear operator on some measurable function space. Then the
commutator between A and b is defined by [b, A]f(z) := b(x)Af(z) — A(bf)(x).

In 1965, Calderén [5] defined a commutator for the Hilbert transform H and a Lipshitz function
b, which is connected closely the Cauchy integral along Lipschitz curves (see also [6]). Commutators
have played an important role in harmonic analysis and PDE, for example in the theory of non-divergent
elliptic equations with discontinuous coefficients (see [4, 11,12, 18]). Moreover, there is also an interesting
connection between the nonlinear commutator, considered by Rochberg and Weiss in [29], and Jacobian
mapping of vector functions. They have been applied in the study of the nonlinear partial differential
equations (see [13,25]).

In 1976, Coifman, Rochberg and Weiss [14] obtained a characterization of LP-boundedness of the
commutators [b, R;] generated by the Reisz transforms R; (j = 1,--- ,n,) and a BMO function b. As
an application of this characterization, a decomposition theorem of the real Hardy space is given in this
paper. Moreover, the authors in [14] proved also that if Q € Lip(S™~1), then the commutator [b, Tq)] for
To and a BMO function b is bounded on LP for 1 < p < oo, which is defined by

0. Tol s @) = pv. [ D

o T =gl (b(z) = b(y)) f(y)dy.
In the same paper, Coifman, Rochberg and Weiss [14] outlined a different approach, which is less direct
but shows the close relationship between the weighted inequalities of the operator T and the weighted
inequalities of the commutator [b, T]. In 1993, Alvarez, Bagby, Kurtz and Pérez [2] developed the idea of
[14], and established a generalized boundedness criterion for the commutators of linear operators. The
result of Alvarez, Bagby, Kurtz and Pérez (see [2, Theorem 2.13]) can be stated as follows.

Theorem A ([2]) Let 1 < p < oo. If a linear operator T is bounded on LP(w) for all w €
Aq, (1 < g < 0), where A, denote the weight class of Muckenhoupt, then for b € BMO, ||[b,T]f||rr <
Clbllsaroll fllze-

Combining Theorem A with the well-known results by Duoandikoetxea [16] on the weighted L?

boundedness of the rough singular integral Tq, we know that if Q € L9(S™~!) for some ¢ > 1, then



[b, Tq] is bounded on L? for 1 < p < co. However, it is not clear up to now whether the operator T with
Qe L'\ Uyt L4(S™71) is bounded on LP(w) for 1 < p < oo and all w € A, (1 < r < o0), Hence, if
Qe L\ Ugs1 L4(S™71), the LP boundedness of [b, Tg] can not be deduced from Theorem A .

The purpose of this paper is to give a sufficient condition which contains | J 1 L9(S™~1), such that
the commutator of convolution operators are bounded on LP(R™) for 1 < p < oo, and this condition was

introduced by Grafakos and Stefanov in [23], which is defined by

o [ o) e < (13)

gesn—t ‘f : y|

where o > 0 is a fixed constant. It is well known that

U £9(s™") € Llog* L(S™") c H'(S™1).
q>1
Let F,(S™1) denote the space of all integrable functions Q on S”~! satisfying (1.3). The examples in
[23] show that there is the following relationship between F,,(S"~!) and H!(S"~!) (the Hardy space on
Sn-ty
U zus ) c () Fa(s" ) g H'(S™) € | FalS™).

q>1 a>0 a>0
The condition (1.3) above have been considered by many authors in the context of rough integral oper-
ators. One can consult [1,7,8,9,10,17,24] among numerous references, for its development and applica-
tions.

Now let us formulate our main results as follows.

Theorem 1. Let Q be a function in L'(S™"™1) satisfying (1.1) and (1.2). If Q € F,(S™"!) for some
a > 1, then [b,Tq] extends to a bounded operator from LP into itself for ”‘Tﬂ <p<a+l.

Corollary 1. Let Q be a function in L*(S™™1) satisfying (1.1) and (1.2). If Q € (o, Fa(S™71),
then [b, Tq] extends to a bounded operator from LP into itself for 1 < p < oco.

The proof of this result is in Section 4. In the proof of Theorem 1, we have used Littlewood-Paley
decomposition and interpolation theorem argument to prove L? (1 < p < oo) norm inequalities for rough
commutator [b,Tg]. These techniques have been used to prove the LP (1 < p < oco) norm inequalities
for rough singular integrals in [23] or [15]. They are very similar in spirit, though not in detail. In the
following, we will point out the difference in the methods used to prove LP (1 < p < 0o) norm inequalities
for rough commutators and rough singular integrals.

Let T be a linear operator, we may decompose T' = )., T; by using the properties of Littlewood-
Paley functions and Fourier transform, reduce T to a sequence of composition operators {7} };cz. Hence,
to get the LP (1 < p < o0) norm of T, it suffices to establish the delicate L? (1 < p < o0) norm of each T;
with a summation convergence factor, which can be obtained by interpolating between the delicate L?
norm of 7}, which has a summation convergent factor, and the L? (1 < ¢ < 0o) norm of T}, for each [ € Z.

Let T be a rough singular integral. The delicate L? norm of each T} can be obtained by using Fourier

transform, the Plancherel theorem and the Littlewood-Paley theory. The L? (1 < ¢ < co) norm of each



T, can be obtained by the method of rotations, the L7 (1 < ¢ < co) bounds of the one dimensional case
of Hardy-Littlewood operator and the Littlewood-Paley theory.

On the other hand, if T is a rough commutator of singular integral, the delicate L? norm of each
T; can be obtained by using the L? norm of the commutators of Littlewood-Paley operators(see Lemma
3.3) and Lemma 3.4 in Section 3. With these techniques and lemmas, G. Hu [26] obtained the result in
Theorem 1 for p = 2. Therefore, it reduces the LP (1 < p < 0o) norm of T' to the L7 (1 < ¢ < co) norm
of T} for each | € Z. Unfortunately, since each T} is generated by a BMO function and a composition
operator, the method of rotations, which deals with the same problem in rough singular integrals, fails
to treat this problem directly. Hence we need to look for a new idea. We find the Bony paraproduct
is the key technique to resolve the problem. In particular, it is worth to point out that main method
used in this paper gives indeed a new application of Bony paraproduct. It is well known that the Bony
paraproduct is an important tool in PDE. However, the idea presented in this paper shows that the Bony
paraproduct is a powerful tool also for handling the integral operators with rough kernels in harmonic
analysis.

It is well known that maximal singular integral operators T¢; play a key role in studying the almost
everywhere convergence of the singular integral operators. The mapping properties of the maximal
singular integrals with convolution kernels have been extensively studied (see [15,23,30], for example).
Therefore, another aim of this paper is to give the LP(R™) boundedness of the maximal commutator
[b, T¢] associated to the singular integral T, which is defined by

(b, T f(x) = sup
JEZ

/ M(b(@ —b(y))f(y) dy|.

T—y|>29 lz —y[™

The following theorem is another main result given in this paper:

Theorem 2. Let Q be a function in L*(S™™1) satisfying (1.1) and (1.2). If Q € F,(S™™1) for some
a > 2, then [b,T¢] extends to a bounded operator from LP into itself for %5 <p < a.

Corollary 2.  Let Q be a function in L*(S™™1) satisfying (1.1) and (1.2). If Q € (2o Fa(S™71),
then [b, T¢)] extends to a bounded operator from LP into itself for 1 < p < oo.

One will see that the maximal commutator [b, Tg] can be controlled pointwise by some composition
operators of T, M, Mg and their commutators [b,Tq], [b, M] and [b, Mq|, where M is the standard

Hardy-Littlewood maximal operator, My denotes the maximal operator with rough kernel, which is

defined by
/ W |

i <lo—yl<2itt [T —y["

Mg f(z) = sup
jez

The corresponding commutators [b, M] and [b, Mq] are defined by

1
[b, M]f(x) = sup — [b(x) — b(y)[1f(y)| dy
r>0 T Jjz—y|<r
and
[b, Mo] f(z) = sup
JEL
We give the following LP(R™) boundedness of the commutators [b, Mq]:

/23'< - |<21‘+1(b<x) B b(y»Q(m_y)f(y)dy‘

|z —y|"



Theorem 3. Let Q be a function in L*(S™1) satisfying (1.1). If Q € F,(S™ 1) for some a > 1,
then [b, M) extends to a bounded operator from LP into itself for O‘TH <p<a+l

Corollary 3.  Let Q be a function in L*(S"™1) satisfying (1.1). If Q € (,oq Fa(S™1), then
[b, Mq] extends to a bounded operator from LP into itself for 1 < p < oo.

Theorem 3 is actually a direct consequence of the LP(R™) boundedness of the commutator formed
by a class of Littlewood-Paley square operator with rough kernel and a BMO function. In fact, if
Q=0- IS%H with A = [g,_, Q(2")do(z'), then Q satisfies (1.2). It is easy to check that

Oz —y)
[b, Mq]f(x) <supjez| [ - (b(z) = b(y) 7 f(y) dy| + Clb, M]f ()
2i < |z —y|<2i+1 |3j - y‘ (14)
< O([b, gplf (z) + [b, M]f (),

where gq and [b, go] denote the Littlewood-Paley square operator and its commutator, which are defined

/2 U =9) 1) 2) v

i<lo—yl<2itt T —y["
Lo o T
27 < |z —y|<27+1

respectively by

gof(z) = (Z

JEZ

and

wﬂwm=<2

JEL

Thus, (1.4) shows that Theorem 3 will follow from the LP(R™) boundedness of the commutators [b, ga]

|z —y|™

and [b, M]. Since the LP(R™) boundedness of the later is well known (see [21]), hence, we need only give
the LP(R™) boundedness of the commutator [b, go] which can be stated as follows.

Theorem 4. Let Q be a function in L*(S™™1) satisfying (1.1) and (1.2). If Q € F,(S™™ ') for some
a > 1, then [b, go| extends to a bounded operator from LP into itself for QTH <p<a+l

Corollary 4.  Let Q be a function in L*(S™™1) satisfying (1.1) and (1.2). If Q € o, Fa(S™71),
then [b, ga] extends to a bounded operator from LP into itself for 1 < p < co.

In fact, Theorem 4 is a corollary of Theorem 1. Write T f(x) = ZKj % f(x), where K;(z) =
jez
%X{2j<‘z|§2j+l}. Define T; f(x) = Kj  f(z), then [b,Tolf(z) = >_;cz[b. 751 f(2), and [b, golf(z) =
(ZjeZ b, T5]f (2)]?) Y2 Then we get the LP boundedness of [b, go] by using Theorem 1, Rademacher
function and Khintchine’s inequalities.

This paper is organized as follows. First, in Section 2, we give some important notations and tools,
which will be used in the proofs of the main results. In Section 3, we give some lemmas which will be used
in the proofs of the main results. In Section 4, we prove Theorem 1 by applying the lemmas in Section
3. Finally, we prove Theorem 2 by applying Theorem 3 and Theorem 4 in Section 5. Throughout this
paper, the letter “C'” will stand for a positive constant which is independent of the essential variables

and not necessarily the same one in each occurrence.



2 Notations and preliminaries

Let us begin by giving some notations and important tools, which will be used in the proofs of our
main results.

1. Schwartz class and Fourier transform. Denote by .(R™) and ./ (R"™) the Schwartz class and the

WS WV

space of tempered distributions, respectively. The notations and denote the Fourier transform
and the inverse Fourier transform, respectively.

2. Smooth decomposition of identity and multipliers. Let ¢ € 7 (R™) be a radial function satisfying
0 < ¢ < 1 with its support is in the unit ball and ¢(£) = 1 for [£| < 3. The function (&) = cp(g) —p(§) €
#(R™) supported by {3 < |¢| < 2} and satisfies the identity Y., ¢(277¢) =1, for & # 0.

For j € Z, denote by A; and G; the convolution operators whose the symbols are P(277¢) and
©(279¢€), respectively. That is, A; and G, are defined by Ej\f(é) = (277€) f(€) and éj\f(f) = (279€) f(¢).
By the Littlewood-Paley theory, for 1 < p < oo and {f;} € LP(I?), the following vector-value inequality

holds (see [22, p.343])
H(Z |Aj+kfj|2)1/2HL,, = CH(Z |fj|2)1/2’
JEL jez

3. Homogeneous Triebel-Lizorkin space Fs’q(R") and Besov space B;’;’q (R™). For0<p,q<oo (p#0)

< oo}
Lp

, for ke [-10,10]. (2.1)

Lr

and s € R, the homogeneous Triebel-Lizorkin space F;ﬂ (R™) is defined by

1/q
(g

JEZ

Erarr) = {f e S®Y: |f]

and the homogeneous Besov space B;q(R") is defined by

) 1/q
s = (2 assls,) - <oof,

JEZ

BrR) = {f e S®Y: ]

where .%/(R™) denotes the tempered distribution class on R™.

4. Sequence Carleson measures. A sequence of positive Borel measures {v;};ez is called a sequence
Carleson measures in R" x Z if there exists a positive constant C' > 0 such that -, v;(B) < C|B| for
all k € Z and all Euclidean balls B with radius 2~%, where | B| is the Lebesgue measure of B. The norm
of the sequence Carleson measures v = {v;};¢z is given by

ot = { 2 S8},
>k
where the supremum is taken over all & € Z and all balls B with radius 2.

5. Homogeneous BMO-Triebel-Lizorkin space. For s € Rand 1 < g < 400, the homogeneous BMO -

Triebel-Lizorkin space F%: is the space of all distributions b for which the sequence {2%79|A; (b)(z)|%dx} ez

is a Carleson measure (see [19]). The norm of b in F%9 is given by

0 = SUp LB| Z/ 29| A (b |qu

6]




where the supremum is taken over all k € Z and all balls B with radius 2=%. For ¢ = +o0, we set
F5:°° = B5:>°. Moreover, F%2 = BMO (see [19,20 ].
6. Bony paraproduct and Bony decomposition. The paraproduct of Bony [3] between two functions

f, g is defined by
wr(9) =Y (8 f)(Gj-39)-

JEZ

At least formally, we have the following Bony decomposition

fo=7p(9) +mg(f) + R(f,9) with R(f.9)=>_ >  (Aif)(Axg). (2.2)

€7 |k—i|<2

3 Lemmas

We first give some lemmas, which will be used in the proof of Theorem 1 and Theorem 2.
Riesz potential and its inverse. For 0 < T < n, the Riesz potential I, of order 7 is defined on ./ (R"™)
by setting fT\f(f) = |§|_Tf(§). Another expression of I, is

Lie) =) [ U

76[ ,
ge [T —y|"T Y

where (1) = 2777~ /2T(257) /T(%). Moreover, for 0 < 7 < n, the “inverse operator” I=1 of I, is defined

by I 1 f(€) = |€]7 f(€), where A denotes the Fourier transform.
With the notations above, we show the following two facts:

Lemma 3.1 For0 <7 < 1/2, we have
~v(r) < Cr, (3.1)

where C' is independent of T.

Proof. Applying the Stirling’s formula, we have
Vora® 12emr < I'(z) < N 2rz" V2= for x> 1.

Thus, by the equation sI'(s) = I'(s + 1) for s > 0, we get

E+l) e
D(257) = 2 T(257 +1) < 2\/%(% + 1) T By (3.2)
and
) = 21(Z L \ETR s 3.3
P =2r(G+1) 2 V2r(3+1) 7 TeEl2>0/r (3.3)

Hence, (3.1) follows from (3.2) and (3.3). Obviously, the constant C' in (3.1) is independent of 7.
Lemma 3.2 For the multiplier Gy, (k € Z), b € BMO(R"), and any fized 0 < 7 < 1/2, we have

2/<:T
|Grblz) = Grb(y)| < C—lz —y["[IbllBrso, (3.4)

where C' is independent of k and 7.



Proof. Note that I.(I71f) = f, we have

Grb(x) = ~( )/Rn o= O
Hence 1
|Gb(z) — Gib(y)| = "y(’]’) /n I.,.I(Gkb)(z)(|x — Ty —znT
< (DI HGrb) [ / r —1z|TH Cly =T
1

n

_ T —1 o
= A(DIHGD) | /

We first show that

1 1 _
_ n—7  |.|n—7 S Cr 1|$7y|T'
7 —y+ | |- L
In fact,
1 1
/ — dz
I e P

1 1

e —y+ 2" o

/IZI<2IIy

dz +/
[z]>2]z—y|

|z —y+ 27 - |27

_ T
< Clx Y|
T

)

where C' is independent of 7. By (3.5), (3.6) and (3.1), we get

|Grb(x) — Grb(y)| < Clz — y|7 17 (Gib) | L,

TR

1 1 —
S/ - dz+/ - dZ+C/ % z
21<3lo—y| 12]"77 2|<2la—y| 12]"77 2|>2)a—y| 12]"77

(3.7)

where C is independent of 7. We now estimate ||I-!(Gyb)||L~. Since GrA,b =0 for u > k + 1, we have

117 (Grb) | =

I7'GR( D Aub)

UEZL

< Y G A e < X A,

L u<k+1 u<k+1

(3.8)

Taking a radial function ¢ € .%(R™) such that supp(¢) C {1/4 < |z| <4} and ¢ = 1 in {1/2 < |z| < 2}.

Then we have

—

LTALb(E) = 27 (246) |2~ ALb(€).

Set a function h by h(¢) = ¢(€)|¢|7. Then

I7PAb(z) = 247 / 2'"h(2"(z — y))Aub(y) dy.

n

So we have

17 Aubllpoe < 27[[2° A2 ) | L1 [ Aubllzoe = 27 (|| 2 ]| Aubd| o

Thus, if there exists a constant C' > 0, independent of 7, such that

(Al < C,

(3.9)



then by (3.7)-(3.8), we have

|Grb(x) = Grb(y)] < Cla =yl D 2°7[[Aub

u<k+1
< Oz — y|72F sup || Aybl| £ Z o(u=k)7
uezL u<kht1
Since for some 0 < 7 < 1,
27 227’ 227’ C
o(u—k)r =i — = = - f 1/2
Z Z 1—92-7 27 — 1 7-297<7-’ or 0<7< /’
u<k+1 Jj=—1
where C' is independent of 7. Using the fact (see [22, p.615])
sup |AybllLe < Cnl[b] Brro, (3.10)
u€Z

we have
_ TokT
Gb(z) — Grb(y)] < CE=Z21b) g0,

where C'is independent of k& and 7. Thus, to finish the proof of Lemma 3.2, it remains to show (3.9). In
fact,

o = [ Wk [ @l < Gl + I PO =l + )
x| < x|>
Since supp(y) C {1/4 < [¢| < 4} and 0 < § < 1/2, we get
L= [l < C,

where C is independent of 7. Thus, to get (3.9), we need only verify that I < C. To do this, let
us recall some notations about the multi-index. For a multi-index o = (a,..., ) € Z7, denote
0“f=07"...05"f, la| = a1 + - - + a, and z® = z{* ... 20" for x € R”. By [22, p.425], we know that

n! £
n/2 _ @
L+ P2 = > arl ol (L1 |e2)

laf<n

o

(HréW is an LP (1 < p < oo) multiplier whenever |a| < n. Hence

and the function m(§) =
(A4 1EH™20(€) " = Y Cam(ma(E¥1()Y =C > Can(ma(§)0*n(€)),
le]<n la|<n
where V denote the inverse Fourier transform. Applying the equation above, we get

I < O@+IEP)™2h@)lre = (1 +1EP)™2h(€))Y ] 2
<C Y Conll0vh]|

la|<n
=C Y Canlld*hllrz =C Y Canlld®@(EIEN)] -
|| <n la|<n
Notice that B
EIE) =D Cor ... O (0P p(€)(0* P (IEm), (3.11)

B<La

where the sum in (3.11) is taken over all multi-indices 8 with 0 < B; < aj for all 1 < j < n. Trivial

computations show that there exists C' > 0, independent of 7, such that [0%~(|¢|7)] < Cfor1/4 < |¢| < 4



and 0 < 7 < 1/2. Further, by ¢ € C§°(R™), then |8%4(£)| < C. So we get [8°(1(€)[€|7)| < C. From this

we get

1/2
I < Ca’n, aa T > d S C’
5 < Z 0% (W (I (/1/4§€§4 £>

al<n
where C' is dependent only o‘nln, but independent of 7. This completes the estimate of (3.9) and Lemma
3.2 follows.

Lemma 3.3 (see [27]). Let ¢ € L (R™) be a radial function such that supp¢ C {1/2 < |£] < 2}
and Y e, #3(271) = 1 for €] # 0. Define the multiplier operator S; by EF({) = ¢(27l§)f(§), S?
by S2f = Si(Sif). For b € BMO(R™), denote by [b,S)](respectively, [b,S?] ) the commutator of S
(respectively, S? ). Then for 1 <p < oo and f € LP(R™), we have

o (T Sz](f)|2>1/2

< C(n, p)l|bll Barollf | zr;

ez Lr
1/2
(i) ](Zub,sfww) < C(n p) 8] maroll v
€7 L»

1/2
S 0500 |H < OO bl (3 157)

(i) , Ay e LR ().
I€Z leZ L

Lemma 3.4 (see [26]). Let m, € CP(R")(0 < 0 < o0) be a family of multipliers such that

supp(my) C {|€] < 20}, and for some constants C, 0 < A <1/2, and a > 0,
Moz~ < Cmin{Ac,log"* 12+ 0)}, ||[Vmg|r~ <C.

Let T, be the multiplier operator defined by

— ~

T5 (&) = mo(£)f(E)-

For b € BMO, denote by [b,T,] the commutator of T,,. Then for any fired 0 < v < 1, there exists a
positive constant C = C(n,v) such that

16, o1 1|2 < C(Ao)" log(1/ )bl sarol| 2, ifo < 10/VA;

I[b, o] fll 22 < Clog™ TV 2+ 0)|Ibl| Baso || fll 2, ifo > 10/V/A;

Similar to the proof of Lemma 3.4, it is easy to get
Lemma 3.5 Let m, € C§°(R™)(0 < 0 < 00) be a family of multipliers such that supp(ms) C {|€| <
20}, and for some constants C, 0 < A<1/2, and a >0, j €N

[me|lLe < Cmin{A2 90, log"* (24 270)}, ||[Vme|lr~ < C2.

Let T, be the multiplier operator defined by

J— ~

T5 (&) = ma (&) f(8).

For b € BMO, denote by [b,T,] the commutator of T,. Then for any fized 0 < v < 1, there exists a
positive constant C = C'(n,v),0 < 8 < 1 such that

16, To)f 22 < C277 (A0)" log(1/A) bl saro | fll2, ifo < 10/V/A;

10



116, T fll 22 < Clog™ @tV (2 4 270) 1b]| garo || fl| 12, ifo > 10/V/A;

Lemma 3.6.  For any j € Z, let K;(z) = %X{2j<|w\ggy‘+l}($). Suppose 2 € LY(S"™1) satisfying
(1.1). Then for 1 < p < oo, the following vector valued inequality

H(Z||Kj*|fj|2)l/2 (me)m

JEZ JET

< CPHQ”Ll
Ly

Lpr

holds for any {f;} in LP(I%).

Proof. Note that for Q € L'(S™~!) and any local integrable function f on R™, we have
0" (f)(x) :=sup||K;| * f(z)| < CMqf(x) forany =zeR",
jez

where
1

Mg f(x) = sup — 2z —y)I[f(y)] dy. (3.12)
r>0 " lz—y|<r
By the L7 boundedness of M, for all ¢ > 1 with Q € L}(S"7!), o* is also a bounded operator on L4(R")
for all ¢ > 1 with Q € L'(S"~1). Thus, by applying Lemma in [15, p.544], we know that, for 1 < p < oo,
the vector valued inequality (3.12) holds.
Lemma 3.7. Forany j € Z, define the operator T; by T; f = K f, where K;(x) = %X{gkmqﬁq(aj).

Denote by [b,S;—;T;S? ;] the commutator of S;—;T; S? .. Suppose Q € LY(S"™1) satisfying (1.1). Then
for any fired 0 <7 < 1/2, b€ BMO(R™), 1 < p < o0,

Tl

2
Y .S TSP Nf|| < Clibllsaro max{—, 2}zl fllz», (3.13)

JEL

Lr
where C' is independent of T and .

Proof. For any j,l € Z, we may write

[0, ST S7;1f = [0, Si—j[(T5S7_; ) + Si— [b, T3] (S7_; f) + Si—y Ty ([b, SE_ ;1)

Thus,
SbsTSE| < || b S-S+ |3 s mw st
JEL JEZ JEZ
| X s st 0|, (8.14)
= L1]-|€-ZL2 + L3.

Below we shall estimate L; for ¢ = 1,2, 3, respectively. For L;, by Lemma 3.3 (iii), Lemma 3.6 and the
Littlewood-Paley theory, we have

Ly < Clbllswol( 2 SEsd g

Lp

<0\|ﬂ||L1||b||BMoH Z|52f| )"

L S Clel bllsmollflze-

Similarly, we have Lo < C||Q| 1[0l Baoll fllze-
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Hence, by (3.14), to show (3.12) it remains to give the estimate of Ls. We will apply the Bony
paraproduct to do this. By (2.2), we have
b, TSP f(z) = b(x)(T;S7 ;1 £)(x) — T;(bSE_; f)(x)
= [mrys2 p(0)(@) = Tj(mesz 5 (0)(@)] + [R(b, T;S7_; ) (x) — T3 (R(b, SE_; f)) ()]
Hmy (T3S7; ) (@) = Ti(mo (S ) ().

Thus
Ly < H ZSlfj [W(Tjsffjf) (0) — Tj(W(S?,]f)(b))]’ o
€T
| 3 s [re. 1387 ) - 1RGS2
2 L (3.15)
+H Z Si—; [ﬂb(TjSl{jf) — Tj(ﬂ-b(Sl{jf))] ‘ I
ez
= M1Ji M + M.

(a) The estimate of My. For My, by A;S;—;g =0 for g € .7/ (R™) when [i — (I — j)| > 3, we get
(1382, 1) (b)(z) — T; (W(S,{jf) () (x)

= > {(TASE)(@)(Gizsb)(x) — Ti[(A:iSE, £)(Gizsb)l(z)}
(=<2 (3.16)

= Y [Gish TIASE (@),
li—(1—5)|<2
Note that
(Geab TN ASE D) =] [ I (Geabla) ~ Gioabl) S )y

2i<|o—y|<2it1 [T —y|"

Oz —
<cf Do) - G187 T ()ldy.
20 <|z—y|<29+1 |z -y
(3.17)
By Lemma 3.2, we have
21'7' Q T —
[Giosh TIASE, 7)) < X blavo [ @ =9y a2, () lay
Z : 29 <|o—yl<2itt [T — ]
2 i+j)T Q T —
<2 blawo | e =0y A 2 iy (3.18)
20 <|zx—y|<29+1 |z -yl
9(i+i)T )
=C 16l BrmoTiay 5 (1 A:Si—; f1) (),

T

where
Qzr—vy
Toyi0() = [ B,
27 <|z—y|<2it1 |357y|

Then, by (3.16), (3.18) and applying Lemma 3.6, (2.1) and the Littlewood-Paley theory, we have that,
for any fixed 0 < 7 < 1/2,

27’l 1/2
M <o X [|( X Mo (amssst,f0F) |

|k|<2 ez

Lp

27-l
< C—|bllsumol @l ‘)(Zlﬁj+ksff|2)l/2‘Lp
M=z aes (3.19)

(Z1sis)"],
JEL

2Tl
< C— bl saroll@l I fllze,

27’1
< CijHBMOHQHLl

12



where C' is independent of [ and 7.

(b) The estimate of Ms. Since |k| <2, Aj xS;_jg =0 for g € .7 (R™) when |i — (I — j)| > 8. Thus
R(b, TS5 f) = T;(R(b, Si—; f))(x)
= > (A (@) (T3 Ak ) (@) — Tj(z > (Aib)(AwkSlfjf)) (2)

i€Z |k|<2 i€Z |k|<2

-y ¥ ((Aibxx)<Tin+ksl_jf><x>—T;»((Aib)(AHksz_jf))(x))

k=—2 |i—(1—j)|<7

=Y D AL TI(AikS ) ().

k==2i—(1—)|<7

By the equality above and using Lemma 3.6, (2.1), (3.10) and the Littlewood-Paley theory, we have

1/2
My <Ol sup A e 3 (X 1ma (8 w8i-570?) |
i€Z - Lr
k<7 jEZ
2
< ClbllsaolQle | (D 152712 HL (3.20)
JEZ

< Clbllparo U 21 fll e
(c) The estimate of M3. Finally, we give the estimate of Ms. Note that S;_;((A;g)(Gi—3h)) = 0 for
g, he S (R") if i — (I — j)| > 5. Thus we get
St (mp(T3Si—5 f) = Tj(m(S1-; 1))
=51 ( D (AD)(GisTiSi—if) — Ty ( Z(Aib)(Gifsslfjf))) (x)

1€Z i€L

= Y {5 (ANGTS ) @)~ ST (AB)(GisSimi ) (@)
li—(1—35)| <4

= Y S (AL TGisSi- /)

li—(1—j)|<4

Applying Proposition 5.1.4 in [22, p.343], it is easy to see that

H(ZIG;‘MijjIz)l/QHLP < H(Z|fj|2)1/2HLp for ke [-10,10].
JEZ

JEZ

Thus, by the Littlewood-Paley theory, Lemma 3.6 and (3.10) we get

/
My < Coup A= Y [|[( 3 Mans(Giosicssics 1DE)

kl<a ' jez "
1/2 3.21
< Clpllmol ol [ (15,027 320
JEZL

< Clbllzaroll2l L[| f[| -

By (3.15), (3.19)-(3.21), we get
2Tl
Ly < Cmax{(2, —Hplao |l I f e for 1€

Combining this with (3.14), we complete the proof of (3.13).
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4 Proof of Theorem 1
Let ¢ € C§°(R™) be a radial function such that 0 < ¢ < 1, supp¢ C {1/2 < |¢| < 2} and
Y27l =1, ¢l #0.

leZ

Define the multiplier operator S; by

~

Sif(€) = (2716 F(©).

Let K;(z) = |x(|n)X{2j<|$‘§2j+l}. Define the operator
Q(y
T =Kegw) = [ Sy,
27 < |y| <29+ |yl

~

and the multiplier T} by 7/’;7‘(5) = TJ/SZ_\Jf(f) &(29~ l§) (&) f(&). With the notations above, it is easy
to see that

b, Tl f(x) =Y ) b, S TSP 1 f (2) = D> D b, S TiSi 1 f () == > Vif()

I€Z FET IeZ FET 17,

where V, f(z) = Z:[b7 Sl_jT?Sl_j}f(x). Then by the Minkowski inequality, we get

JEL
[logf 0o
16 Tal f[l e Sovif|| + >t (4.1)
l=—o00 Ly I=[log \/§]+1 Lr

Now, we will estimate the two cases respectively.
llog V2]
> Vif
l=—00
Since Q € L*(S™71) satisfies (1.1) and (1.2), by a well-known Fourier transform estimate of Duoandikoetx-

Case 1. The estimate of

Lpr

ea and Rubio de Francia (See [15, p.551-552]), it is easy to show that
|K;(&)] < CllQlz2[27¢]-

A trivial computation gives that

IVE;lLe < C2)|Q|11.

Set m; (&) = I/(?j(f), mb(€) = m;(€)p(277L€), and recall that T]l by

— ~

T} f(&) = mj(€)f(&).
Straightforward computations lead to
[mf 279 )[p= < CIQU2, V5277 )| < ClI9|11,

supp{m};(277€)}  {l¢] < 2+2}.

Let fjl be the operator defined by

~

Tif() = ml (2776 7).

14



Denote by T}, | f = [b, T}]f and T}, ,f = T} f. Similarly, denote by T;;mf = [b,f}]f and T;;b,of = f}f.

Thus via the Plancherel theorem and Lemma 3.4 states that for any fixed 0 <v < 1, k € {0,1},

1T i fllzz < ClolBaro Q2 1 fll 22, 1< [log v2].

Dilation-invariance says that

1T i fllzz < ClolBaro QL2 |1 fll 2, 1< [log v2].

(4.2)

First, we will give the L?-norm estimate of V;f by using the inequality (4.2). Recalling that V;f(z) =

Z[b7 Sl,jT;Sl,j}f(x), for any j,1 € Z, we may write
JEL

b, S13T}Si—51f = [b, St ) (T}Si—s f) + Si—j[b, T](S1—5.f) + Si— T}

Visle < | Yol Siel@isishl +HZ& TS50
j EZ

s,
jEL
= Ql iQQ + Q3

For @1, by Lemma 3.3(iii), (4.2) for £k = 0 and the Littlewood-Paley theory, we get

L2

(Z%wl_jfﬁ)

< Clbllsaro2 19| [1£ e

1/2

@ = Clilawo (X miss) |
JEZ

1/2

< Ol saro2” |9

L2

For @2, by the Littlewood-Paley theory, (4.2) for £k = 0 and Lemma 3.3(i), we get

L2

1/2

(Zub, Sz]—m?) |
JEZ

< OBl saro2™ 19 1 [1£1]2-

About Qs, by(4.2) for £k =1 and the Littlewood-Paley theory, we have

@ =c|(Sim.msi ]f|>1/2\

JEZ

o <el(Smms )’

JEZ

< C2°19 11

L2

L2

1/2
(Tisiir?)
JEZ
< Clblparo2 11l

Combining (4.4) with (4.5) and (4.6), we have

< C2"||Q|

L2

IVifllze < Cllbllaro2 QL[ fllze, 1< [log v2].
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On the other hand, since T} f(x) = T;S;—; f(x), then V; f(x) = Z[b7 S1—;T;S;_;1f (x). Applying Lemma
jEL
3.7, we get for 1 < p < o0

Vifllze < ClbllaollQl | fllze, 1< [logv2]. (4.8)

Interpolating between (4.7) and (4.8), there exists a constant 0 < 8 < 1, such that
Viflice < C2°° QI bl aoll fllLe, 1< [log V2] (4.9)

Then by the Minkowski inequality, we get for 1 < p < oo

[log V2] [log v2]
SNovif|l < > IViflee
l=—00 Lr l=—o00
llog V3] (4.10)
<C > 2%bllpmol QI f] e
l=—00
< ClpbllsaolQ Ll fllze-
Case 2. The estimate of Z i f
l:1+[log\/§] Lr
Recalling that V,f(z) = Z[b, Sl,jTjS’l{j]f(x). We will give the delicate L? norm of V;f and the

JEZ
LP (1 < p < o0) norm of V; f respectively. It is easy to see that if Q € F,(S™™!) for a > 1 satisfies (1.1)

and (1.2),
IK;(6)] < Clog @ Y(|2¢| +2),  ||VE, |z~ < C2.

Set m; (&) = I/('\j(f)7 mé(f) = ¢(2771)m;(€). Let T} be the operator defined by 7/“;\]”(5) = mé(f) &).

Straightforward computations lead to
Im} (2791 < Clog™* ' (2421), [ Vmj(277 ||z~ < C,

supp{mj(277€)} C {l¢] < 2"}
Let fjl be the operator defined by
Tif(6) = mh (29 J(€).
Denote by Tj@;mf = [b, le]f and T;;b,of = T]lf Similarly, denote by T;;b,lf = [bﬂNﬂj]f and le';b,Of = T]lf
Thus via the Plancherel theorem and Lemma 3.4 with ¢ = 2! states that for any fixed 0 < v < 1,
k € {0,1},
1T sef 22 < ClIblEar0Clog =V 24 24| |2, 121+ [log v2]. (4.11)

Dilation-invariance says that
1T} 0ot 22 < CllbllEaro log ™"V 2+ 2)[ fll 2, 1> 1+ [log V2], (4.12)
Applying (4.12), Lemma 3.3 and the Littlewood-Paley theory, similar to the proof of (4.7), we get
IVifllz2 < Cllbllsarolog ™~V (2 4 20)| £l 2, 121+ [log V2], (4.13)
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On the other hand, by Lemma 3.7 , for any fixed 0 < 7 < 1/2, 1 < p < o0,
Visler < Cllblonso = 1206 I flr, 121+ [log v,
where C' is independent of 7 and I. Take 7 = 1/1, we get
IViflize < ClUblBaol|Q L[ £l e, [>1+ [logv2],
where C' is independent of . Which says that for any r satisfying 1 < r < co, we have
IVifller < ClUblisaroll fle-, 121+ log V2. (4.14)

Now for any p > 2, we take r sufficient large such that r > p. Using the Riesz-Thorin interpolation
theorem between (4.13) and (4.14), we have that for any I > 1 + [log v/2],

IVifllze < Clbllsarol* " log =D+ (2 42| £ 10,
2(r—p)

p(r=2)-
log((ma=DvHD2/P(9 4 91y Therefore, we get

where 6 = We can see that if 7 — oo, then 6 goes to 2/p and log!(=¥~Dv+Do(2 4 9y goes to

IViflle < Cllbllsarol =27 log D05 (2 4 21) | | s, [>1+[logV2], p=2  (415)

Then by the Minkowski inequality, for 2 < p < o + 1, we get

o0

> oot
1=1+[log V3] Ly
- o (a1 et 1) 2 (4.16)
<Clbllsmo >, P CETIEIR f
I=1+[log V2]

< Clpllsmoll fllze-
If 1 < p < 2, by duality, we get for p > O‘TH

o0

>t

I=1+[log V2]

< Clbllzaoll flle- (4.17)
Lr

Combining (4.16) with (4.17), we get for 2t <p < a+1,

o0

>t

l=1+][log \/5]

< ClbllBmoll fllLe-

Lp

This completes the proof of Theorem 1.

5 Proof of Theorem 2

Let o > 2, K; and the operator T; be the same as in the proof of Theorem 1. Define

b7 = [ o) i) )
=S [ @ - T )y
; 20 < |z—y|<29+1 lz -yl

= Z[b’ Tj]f(x)v
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where

1f(a) = o) — bl 2E = Y)
b= [ 0w ) T ) (5.1
So, we get
p Il Tal s @) < sup | > BT

oo

Z[b T;]f ()|

=S

Schwartz function ® such that ®(¢) = 1 for [¢] < 1 and ®(¢) = 0 for €| > 2, and define ®, by
d,(€) = B(2°¢). Write

Thus, to prove Theorem 2, it suffices to estimate the LP norm of sup
SEZL

Taking a radial

0o s—1 00 oo

ST = [0 (170l - X L) @)] + | T Tl - 0 (b1 ) )]
= LS+ Lfw)
Observed that
v ( -i[b’ T1f ) @) = .. _Zoo Kil5(a) = v.) _Zm 136 ) @)

where W is a convolution operator with its convolution kernel ®,. Observe that

(I)S * 2 KJ((E)

< CllQlla27 /A + 2752

j=—o00
s—1
(see [15]) and Z T;f(z) =Taf(x ZT f(z). It follows that
j=—00

sup Lo f ()| < CM([b, Tal f)(x) + C[b, M f (x) + [b, M|(To.f) (x) + [b, M|(Te f) ().

Then by Theorem 1, the L? (=25 < p < «) boundedness of Tq, T with kernel function 2 € F,, for o > 2
(see [23]) and [b, M] (see [21]), we get for —%5 <p < o,

IsuplLofllar < Clblaaol flor (-2
To estimate sup |J, f ()], write
SEL
> T31f@) - 0 s (LTS ) @) = ST ) - o, ZK (L7 ) @)

Thus we get
up |13 (r)] < sup | S[b, (5~ @)« K11 ()| + b, M(T /) ),

where ¢ is Dirac mass at the origin. Since for 25 < p < a, (see [23])

[[[b, M](T& )l < CllbllBaro ]l fl - (5:3)
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Thus, to give the estimate of L? norm for the term sup,.y |Js f(x)|, it suffices to give the estimate of L?

norm for the term sup ‘ Z (0 — @) * K] f(x)|. Note that
SEL
suIZ)’Z (0 — ;) * K] ‘ <Zsu[z)\ D)« Kjpqf(x)].
ES ES

Let Us j f(z) = (6 — @) % Ky * f and [b,Us ;] f(z) = [b, (6 — ®s) * Ksp5]f. Then

Sup\z 6=+ K@)| <Y supl U@ (5.4)

SEZ =0 SEZ

It is easy to see that

sup b, Us,s1 ()]

< Cup [0, Tuss ()] +C sup (Willb, Togsl + Clo, Wil(Tav ) ) ()

< Cigg\[b,Tsﬂ] ()| +CM(§IGIIZ>|[b s Tots]f1) (@) + Clb, M](Ma f) ()

< Cb, Mo f(x) + CM([b, M f)(x) + C[b, M](Ma f)(x).
Applying Theorem 3, the LP (1 < p < oo) boundedness of M, Mg with kernel function Q € L(S"1)
(see [22]) and [b, M] (see [21]), we have for —%5 <p < a,

| sup b, Us i1 fllle < C(I[b, Mo fllze + [l BrollMaflr) < Cllbllzaroll £ Le- (5.5)

On the other hand, set

)

By j(€) = (1= (&) Kus(€),  BL(&) = (1 — 0u(€))Kar (§)o(2°7'€).
Define the operator U ; by Ué’jf(f) = U/w\f(f)¢(25_l£), and denote by [b, Uéj] the commutator of Ui,j'
Then it is clear that

b, U jlf () = > b, UL ;S7 ) f ().

ez
By the Minkowski inequality, we get

1/2
Isup b Ulfllee < (X 001
SEZL L2
1/2
<|(Sixzmonstre)
SEZ 1ET o L2
5.6
<y (Zlblﬂ ISP sflg) >0
ez ' Nsez L2
1/2
+ 3| (Zion sz are)
ez ' Nsez L2
=1 + I5.
To complete the proof we will estimate each term separately. Denote by Uimb’lf = [b, Usl,j]f and

Ué,j;b,of = Usl’jf. Obviously, if we can prove that for any 0 < v < 1, k € {0, 1}, there exists a constant
0 < B < 1, such that

Uz jvifllzz < C2 |0l n02 1 fllze,  for 1< [log V2] (5.7)
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and

Ub o nfllne < Clbl% ., log(—@= VUL (917 4 9)|1 ]| 12, for 1> [logV?2],+1 (5.7)
o

ENHA

then we may finish the estimate of I; and I. We consider first ;. In fact, by (5.7) and (5.7°) for k =1
and the Littlewood-Paley theory, we get

[log V2]

1/2 0 1/2
Lo< ) (Z[b,U;j]Sf_sfP) + Y <Z|bUl ]S J?) [
l=—00 SEL L 1=[log v/2]+1 s€L L
} [log v2] 1/2
<czmplavo( Y 2 (Sistar) | )
l=—o00 SEZL L2
[e%s} /2
solblmuo( D s ) (st gfIQ) )
I=[log V/2]+1 SEZL L2
Since (14 j)? > 1(j + 1), we get
. (—a—1v
L <COG+1) ™7 [blavol flle. (5.8)

We will now estimate I5. by (5.7) for k = 0, the Littlewood-Paley theory and Lemma 3.3 (ii), we get

[log V2]

1/2 ) 1/2
pos Y |(Zwenestar) |+ X |(Swksste)
l=—00 SEL L2 I=[log V2] +1 SEZL L2
~ /llog V2] 1/2
coro( 3 2 (Timstare) | ) (59)
l=—00 SEZL L?
00 1/2
+c( > loglT UM 4 g) H( |[b, S?_s]flz) >
1=[log V2]+1 SEZ L2
. (—a—1)v+1
<CGE+1) = [blsmollfllLe-

Combining I; with Iz, we get

(—a—1Dv+1
2

| sup 0, UslflllL2 <CG+1) 16l Baro | 1 2 (5.10)
se

Interpolating between (5.5) and (5.10), similar to the proof of (4.15), for p > 2, we get

) 2 (ca-luit
| sup 0, Us sl f e <CG+1)7 [0l Baroll fll e (5.11)
se
Then by (5.4), we get for 2 < p < a,
sup’ (6 — @) x Kj|f ‘ j+1) 7bBMOfLP
up Z @ g IbllsollfI 512)
< Cllbllsmoll fllze-
Similarly, for p < 2, we get
2 (—a—1wvtl
||Sl€lg|[vas7j]f|||Lv <CE+1» = [bllemoll e (5.13)
S
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Then by (5.4), we get for —%5 <p <2,

2| i[b’ (0= @) Kj]f(x)’HL = i(j IR e
g =0

Ju+1
= [bllsamollfllze
SEL

< Clbllsumollfllze-

(5.14)

j=s

This completes the proof of Theorem 2. Hence it remains to prove (5.7) and (5.77). To this end, define

—

multiplier ﬁsl] by ﬁsljf(f) = Bi’j(Z_sf)f(f), and denote by [b, ﬁéj] the commutator of ﬁéj Define
Ul i f = b0 1f and U, of = UL, f. Recall that

~ ~ 1

Boj(€) = (1= Bu)Rers(€)s BLy(©) = (1= Bu(€) Koy (9(26).

It ie easy to see that

B, ;(€)| < C2779|2°¢| for [2°¢| <1,
B, ;(€)] < Clog™ 71 (]2°¢| +2) for [2°¢] > 1,
|VB,,;(§)| < C2°27.

Since supp(BL ;(27%¢)) C {€: 2171 < [¢] < 2'}, we have the following estimates
|B,;(27°¢)| < €277 for 1<0

B, j(27°¢)| < Clog™* (27 +2) for 1>0,
VB ;(27°¢)| < C2,

Applying Lemma 3.5 with o = 2!, A = 1/2 and the Plancherel theory, there exists a constant 0 < 8 < 1,
such that for any fixed 0 < v < 1, k € {0,1},

”ﬁi,j;b,kaLz < Cblsar02 %24 2, for 1< [logV2).

1T s llez < Clbl a0 log ™2 4 2)| fllz,  for 1> [logv2]+1.

Which implies that
1Us jwnfllze < ClolBao2 P2 fllzz,  for 1< [logv2].

U2 s f Nz < Clbl a0 log™ @ 4 2)| flle,  for 1= [log V2] +1,

by dilation invariance. This establishes the proof of (5.7) and (5.77).
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