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1 Introduction

The homogeneous singular integral operator TΩ is defined by

TΩf(x) = p.v.

∫
Rn

Ω(x− y)

|x− y|n
f(y) dy,

where Ω ∈ L1(Sn−1) satisfies the following conditions:

(a) Ω is homogeneous function of degree zero on Rn \ {0}, i.e.

Ω(tx) = Ω(x) for any t > 0 and x ∈ Rn\{0}. (1.1)

(b) Ω has mean zero on Sn−1, the unit sphere in Rn, i.e.∫
Sn−1

Ω(x′) dσ(x′) = 0. (1.2)

For a function b ∈ Lloc(Rn), let A be a linear operator on some measurable function space. Then the

commutator between A and b is defined by [b, A]f(x) := b(x)Af(x)−A(bf)(x).

In 1965, Calderón [5] defined a commutator for the Hilbert transform H and a Lipshitz function

b, which is connected closely the Cauchy integral along Lipschitz curves (see also [6]). Commutators

have played an important role in harmonic analysis and PDE, for example in the theory of non-divergent

elliptic equations with discontinuous coefficients (see [4, 11, 12, 18]). Moreover, there is also an interesting

connection between the nonlinear commutator, considered by Rochberg and Weiss in [29], and Jacobian

mapping of vector functions. They have been applied in the study of the nonlinear partial differential

equations (see [13, 25]).

In 1976, Coifman, Rochberg and Weiss [14] obtained a characterization of Lp-boundedness of the

commutators [b, Rj ] generated by the Reisz transforms Rj (j = 1, · · · , n, ) and a BMO function b. As

an application of this characterization, a decomposition theorem of the real Hardy space is given in this

paper. Moreover, the authors in [14] proved also that if Ω ∈ Lip(Sn−1), then the commutator [b, TΩ] for

TΩ and a BMO function b is bounded on Lp for 1 < p <∞, which is defined by

[b, TΩ]f(x) = p.v.

∫
Rn

Ω(x− y)

|x− y|n
(b(x)− b(y))f(y)dy.

In the same paper, Coifman, Rochberg and Weiss [14] outlined a different approach, which is less direct

but shows the close relationship between the weighted inequalities of the operator T and the weighted

inequalities of the commutator [b, T ]. In 1993, Alvarez, Bagby, Kurtz and Pérez [2] developed the idea of

[14], and established a generalized boundedness criterion for the commutators of linear operators. The

result of Alvarez, Bagby, Kurtz and Pérez (see [2, Theorem 2.13]) can be stated as follows.

Theorem A ([2]) Let 1 < p < ∞. If a linear operator T is bounded on Lp(w) for all w ∈

Aq, (1 < q < ∞), where Aq denote the weight class of Muckenhoupt, then for b ∈ BMO, ‖[b, T ]f‖Lp ≤

C‖b‖BMO‖f‖Lp .

Combining Theorem A with the well-known results by Duoandikoetxea [16] on the weighted Lp

boundedness of the rough singular integral TΩ, we know that if Ω ∈ Lq(Sn−1) for some q > 1, then
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[b, TΩ] is bounded on Lp for 1 < p <∞. However, it is not clear up to now whether the operator TΩ with

Ω ∈ L1 \
⋃
q>1 L

q(Sn−1) is bounded on Lp(w) for 1 < p < ∞ and all w ∈ Ar (1 < r < ∞), Hence, if

Ω ∈ L1 \
⋃
q>1 L

q(Sn−1), the Lp boundedness of [b, TΩ] can not be deduced from Theorem A .

The purpose of this paper is to give a sufficient condition which contains
⋃
q>1 L

q(Sn−1), such that

the commutator of convolution operators are bounded on Lp(Rn) for 1 < p <∞, and this condition was

introduced by Grafakos and Stefanov in [23], which is defined by

sup
ξ∈Sn−1

∫
Sn−1

|Ω(y)|
(

1

|ξ · y|

)1+α

dσ(y) <∞, (1.3)

where α > 0 is a fixed constant. It is well known that⋃
q>1

Lq(Sn−1) ⊂ L log+ L(Sn−1) ⊂ H1(Sn−1).

Let Fα(Sn−1) denote the space of all integrable functions Ω on Sn−1 satisfying (1.3). The examples in

[23] show that there is the following relationship between Fα(Sn−1) and H1(Sn−1) (the Hardy space on

Sn−1) ⋃
q>1

Lq(Sn−1) ⊂
⋂
α>0

Fα(Sn−1) * H1(Sn−1) *
⋃
α>0

Fα(Sn−1).

The condition (1.3) above have been considered by many authors in the context of rough integral oper-

ators. One can consult [1, 7, 8, 9, 10, 17, 24] among numerous references, for its development and applica-

tions.

Now let us formulate our main results as follows.

Theorem 1. Let Ω be a function in L1(Sn−1) satisfying (1.1) and (1.2). If Ω ∈ Fα(Sn−1) for some

α > 1, then [b, TΩ] extends to a bounded operator from Lp into itself for α+1
α < p < α+ 1.

Corollary 1. Let Ω be a function in L1(Sn−1) satisfying (1.1) and (1.2). If Ω ∈
⋂
α>1 Fα(Sn−1),

then [b, TΩ] extends to a bounded operator from Lp into itself for 1 < p <∞.

The proof of this result is in Section 4. In the proof of Theorem 1, we have used Littlewood-Paley

decomposition and interpolation theorem argument to prove Lp (1 < p <∞) norm inequalities for rough

commutator [b, TΩ]. These techniques have been used to prove the Lp (1 < p < ∞) norm inequalities

for rough singular integrals in [23] or [15]. They are very similar in spirit, though not in detail. In the

following, we will point out the difference in the methods used to prove Lp (1 < p <∞) norm inequalities

for rough commutators and rough singular integrals.

Let T be a linear operator, we may decompose T =
∑
l∈Z Tl by using the properties of Littlewood-

Paley functions and Fourier transform, reduce T to a sequence of composition operators {Tl}l∈Z. Hence,

to get the Lp (1 < p <∞) norm of T , it suffices to establish the delicate Lp (1 < p <∞) norm of each Tl

with a summation convergence factor, which can be obtained by interpolating between the delicate L2

norm of Tl, which has a summation convergent factor, and the Lq (1 < q <∞) norm of Tl, for each l ∈ Z.

Let T be a rough singular integral. The delicate L2 norm of each Tl can be obtained by using Fourier

transform, the Plancherel theorem and the Littlewood-Paley theory. The Lq (1 < q < ∞) norm of each
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Tl can be obtained by the method of rotations, the Lq (1 < q < ∞) bounds of the one dimensional case

of Hardy-Littlewood operator and the Littlewood-Paley theory.

On the other hand, if T is a rough commutator of singular integral, the delicate L2 norm of each

Tl can be obtained by using the L2 norm of the commutators of Littlewood-Paley operators(see Lemma

3.3) and Lemma 3.4 in Section 3. With these techniques and lemmas, G. Hu [26] obtained the result in

Theorem 1 for p = 2. Therefore, it reduces the Lp (1 < p < ∞) norm of T to the Lq (1 < q < ∞) norm

of Tl for each l ∈ Z. Unfortunately, since each Tl is generated by a BMO function and a composition

operator, the method of rotations, which deals with the same problem in rough singular integrals, fails

to treat this problem directly. Hence we need to look for a new idea. We find the Bony paraproduct

is the key technique to resolve the problem. In particular, it is worth to point out that main method

used in this paper gives indeed a new application of Bony paraproduct. It is well known that the Bony

paraproduct is an important tool in PDE. However, the idea presented in this paper shows that the Bony

paraproduct is a powerful tool also for handling the integral operators with rough kernels in harmonic

analysis.

It is well known that maximal singular integral operators T ∗Ω play a key role in studying the almost

everywhere convergence of the singular integral operators. The mapping properties of the maximal

singular integrals with convolution kernels have been extensively studied (see [15, 23, 30], for example).

Therefore, another aim of this paper is to give the Lp(Rn) boundedness of the maximal commutator

[b, T ∗Ω] associated to the singular integral TΩ, which is defined by

[b, T ∗Ω]f(x) = sup
j∈Z

∣∣∣∣ ∫
|x−y|>2j

Ω(x− y)

|x− y|n
(b(x)− b(y))f(y) dy

∣∣∣∣.
The following theorem is another main result given in this paper:

Theorem 2. Let Ω be a function in L1(Sn−1) satisfying (1.1) and (1.2). If Ω ∈ Fα(Sn−1) for some

α > 2, then [b, T ∗Ω] extends to a bounded operator from Lp into itself for α
α−1 < p < α.

Corollary 2. Let Ω be a function in L1(Sn−1) satisfying (1.1) and (1.2). If Ω ∈
⋂
α>2 Fα(Sn−1),

then [b, T ∗Ω] extends to a bounded operator from Lp into itself for 1 < p <∞.

One will see that the maximal commutator [b, T ∗Ω] can be controlled pointwise by some composition

operators of TΩ, M , MΩ and their commutators [b, TΩ], [b,M ] and [b,MΩ], where M is the standard

Hardy-Littlewood maximal operator, MΩ denotes the maximal operator with rough kernel, which is

defined by

MΩf(x) = sup
j∈Z

∣∣∣∣ ∫
2j<|x−y|≤2j+1

Ω(x− y)

|x− y|n
f(y)dy

∣∣∣∣.
The corresponding commutators [b,M ] and [b,MΩ] are defined by

[b,M ]f(x) = sup
r>0

1

rn

∫
|x−y|<r

|b(x)− b(y)||f(y)| dy

and

[b,MΩ]f(x) = sup
j∈Z

∣∣∣∣ ∫
2j<|x−y|<2j+1

(b(x)− b(y))
Ω(x− y)

|x− y|n
f(y)dy

∣∣∣∣.
We give the following Lp(Rn) boundedness of the commutators [b,MΩ]:
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Theorem 3. Let Ω be a function in L1(Sn−1) satisfying (1.1). If Ω ∈ Fα(Sn−1) for some α > 1,

then [b,MΩ] extends to a bounded operator from Lp into itself for α+1
α < p < α+ 1.

Corollary 3. Let Ω be a function in L1(Sn−1) satisfying (1.1). If Ω ∈
⋂
α>1 Fα(Sn−1), then

[b,MΩ] extends to a bounded operator from Lp into itself for 1 < p <∞.

Theorem 3 is actually a direct consequence of the Lp(Rn) boundedness of the commutator formed

by a class of Littlewood-Paley square operator with rough kernel and a BMO function. In fact, if

Ω̃ = Ω− A
|Sn−1| with A =

∫
Sn−1 Ω(x′)dσ(x′), then Ω̃ satisfies (1.2). It is easy to check that

[b,MΩ]f(x) ≤ supj∈Z

∣∣∣∣ ∫
2j<|x−y|<2j+1

(b(x)− b(y))
Ω̃(x− y)

|x− y|n
f(y) dy

∣∣∣∣+ C[b,M ]f(x)

≤ C([b, gΩ̃]f(x) + [b,M ]f(x)),

(1.4)

where gΩ and [b, gΩ] denote the Littlewood-Paley square operator and its commutator, which are defined

respectively by

gΩf(x) =

(∑
j∈Z

∣∣∣∣ ∫
2j<|x−y|≤2j+1

Ω(x− y)

|x− y|n
f(y)dy

∣∣∣∣2)1/2

and

[b, gΩ]f(x) =

(∑
j∈Z

∣∣∣∣ ∫
2j<|x−y|<2j+1

(b(x)− b(y))
Ω(x− y)

|x− y|n
f(y)dy

∣∣∣∣2)1/2

.

Thus, (1.4) shows that Theorem 3 will follow from the Lp(Rn) boundedness of the commutators [b, gΩ]

and [b,M ]. Since the Lp(Rn) boundedness of the later is well known (see [21]), hence, we need only give

the Lp(Rn) boundedness of the commutator [b, gΩ] which can be stated as follows.

Theorem 4. Let Ω be a function in L1(Sn−1) satisfying (1.1) and (1.2). If Ω ∈ Fα(Sn−1) for some

α > 1, then [b, gΩ] extends to a bounded operator from Lp into itself for α+1
α < p < α+ 1.

Corollary 4. Let Ω be a function in L1(Sn−1) satisfying (1.1) and (1.2). If Ω ∈
⋂
α>1 Fα(Sn−1),

then [b, gΩ] extends to a bounded operator from Lp into itself for 1 < p <∞.

In fact, Theorem 4 is a corollary of Theorem 1. Write TΩf(x) =
∑
j∈Z

Kj ∗ f(x), where Kj(x) =

Ω(x)
|x|n χ{2j<|x|≤2j+1}. Define Tjf(x) = Kj ∗ f(x), then [b, TΩ]f(x) =

∑
j∈Z[b, Tj ]f(x), and [b, gΩ]f(x) =(∑

j∈Z |[b, Tj ]f(x)|2
)1/2

. Then we get the Lp boundedness of [b, gΩ] by using Theorem 1, Rademacher

function and Khintchine’s inequalities.

This paper is organized as follows. First, in Section 2, we give some important notations and tools,

which will be used in the proofs of the main results. In Section 3, we give some lemmas which will be used

in the proofs of the main results. In Section 4, we prove Theorem 1 by applying the lemmas in Section

3. Finally, we prove Theorem 2 by applying Theorem 3 and Theorem 4 in Section 5. Throughout this

paper, the letter “C ” will stand for a positive constant which is independent of the essential variables

and not necessarily the same one in each occurrence.
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2 Notations and preliminaries

Let us begin by giving some notations and important tools, which will be used in the proofs of our

main results.

1. Schwartz class and Fourier transform. Denote by S (Rn) and S ′(Rn) the Schwartz class and the

space of tempered distributions, respectively. The notations “ ̂ ” and “∨” denote the Fourier transform

and the inverse Fourier transform, respectively.

2. Smooth decomposition of identity and multipliers. Let ϕ ∈ S (Rn) be a radial function satisfying

0 ≤ ϕ ≤ 1 with its support is in the unit ball and ϕ(ξ) = 1 for |ξ| ≤ 1
2 . The function ψ(ξ) = ϕ( ξ2 )−ϕ(ξ) ∈

S (Rn) supported by { 1
2 ≤ |ξ| ≤ 2} and satisfies the identity

∑
j∈Z ψ(2−jξ) = 1, for ξ 6= 0.

For j ∈ Z, denote by ∆j and Gj the convolution operators whose the symbols are ψ(2−jξ) and

ϕ(2−jξ), respectively. That is, ∆j andGj are defined by ∆̂jf(ξ) = ψ(2−jξ)f̂(ξ) and Ĝjf(ξ) = ϕ(2−jξ)f̂(ξ).

By the Littlewood-Paley theory, for 1 < p < ∞ and {fj} ∈ Lp(l2), the following vector-value inequality

holds (see [22, p.343])∥∥∥(∑
j∈Z
|∆j+kfj |2

)1/2∥∥∥
Lp
≤ C

∥∥∥(∑
j∈Z
|fj |2

)1/2∥∥∥
Lp
, for k ∈ [−10, 10]. (2.1)

3. Homogeneous Triebel-Lizorkin space Ḟ s,qp (Rn) and Besov space Ḃs,qp (Rn). For 0 < p, q ≤ ∞ (p 6=∞)

and s ∈ R, the homogeneous Triebel-Lizorkin space Ḟ s,qp (Rn) is defined by

Ḟ s,qp (Rn) =

{
f ∈ S ′(Rn) : ‖f‖Ḟ s,qp =

∥∥∥∥(∑
j∈Z

2−jsq|∆jf |q
)1/q∥∥∥∥

Lp
<∞

}

and the homogeneous Besov space Ḃs,qp (Rn) is defined by

Ḃs,qp (Rn) =

{
f ∈ S ′(Rn) : ‖f‖Ḃs,qp =

(∑
j∈Z

2−jsq‖∆jf‖qLp
)1/q

<∞
}
,

where S ′(Rn) denotes the tempered distribution class on Rn.

4. Sequence Carleson measures. A sequence of positive Borel measures {vj}j∈Z is called a sequence

Carleson measures in Rn × Z if there exists a positive constant C > 0 such that
∑
j≥k vj(B) ≤ C|B| for

all k ∈ Z and all Euclidean balls B with radius 2−k, where |B| is the Lebesgue measure of B. The norm

of the sequence Carleson measures v = {vj}j∈Z is given by

‖v‖ = sup

{
1

|B|
∑
j≥k

vj(B)

}
,

where the supremum is taken over all k ∈ Z and all balls B with radius 2−k.

5. Homogeneous BMO-Triebel-Lizorkin space. For s ∈ R and 1 ≤ q < +∞, the homogeneous BMO -

Triebel-Lizorkin space Ḟ s,q∞ is the space of all distributions b for which the sequence {2sjq|∆j(b)(x)|qdx}j∈Z
is a Carleson measure (see [19]). The norm of b in Ḟ s,q∞ is given by

‖b‖Ḟ s,q∞ = sup

[
1

|B|
∑
j≥k

∫
B

2sjq|∆j(b)(x)|qdx
] 1
q
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where the supremum is taken over all k ∈ Z and all balls B with radius 2−k. For q = +∞, we set

Ḟ s,∞∞ = Ḃs,∞∞ . Moreover, Ḟ 0,2
∞ = BMO (see [19, 20 ].

6. Bony paraproduct and Bony decomposition. The paraproduct of Bony [3] between two functions

f , g is defined by

πf (g) =
∑
j∈Z

(∆jf)(Gj−3g).

At least formally, we have the following Bony decomposition

fg = πf (g) + πg(f) +R(f, g) with R(f, g) =
∑
i∈Z

∑
|k−i|≤2

(∆if)(∆kg). (2.2)

3 Lemmas

We first give some lemmas, which will be used in the proof of Theorem 1 and Theorem 2.

Riesz potential and its inverse. For 0 < τ < n, the Riesz potential Iτ of order τ is defined on S ′(Rn)

by setting Îτf(ξ) = |ξ|−τ f̂(ξ). Another expression of Iτ is

Iτf(x) = γ(τ)

∫
Rn

f(y)

|x− y|n−τ
dy,

where γ(τ) = 2−τπ−n/2Γ(n−τ2 )/Γ( τ2 ). Moreover, for 0 < τ < n, the “inverse operator” I−1
τ of Iτ is defined

by Î−1
τ f(ξ) = |ξ|τ f̂(ξ), where ∧ denotes the Fourier transform.

With the notations above, we show the following two facts:

Lemma 3.1 For 0 < τ < 1/2, we have

γ(τ) ≤ Cτ, (3.1)

where C is independent of τ.

Proof. Applying the Stirling’s formula, we have

√
2πxx−1/2e−x ≤ Γ(x) ≤ 2

√
2πxx−1/2e−x for x > 1.

Thus, by the equation sΓ(s) = Γ(s+ 1) for s > 0, we get

Γ(n−τ2 ) = 2
n−τ Γ(n−τ2 + 1) ≤ 2

√
2π
(
n−τ

2 + 1
)(n−τ2 + 1

2 )

e−
(n−τ)

2 −1 · 2
n−τ ≤ C (3.2)

and

Γ( τ2 ) = 2
τ Γ( τ2 + 1) ≥

√
2π
(
τ
2 + 1

)( τ2 + 1
2 )

e−
τ
2−1 · 2

τ ≥ C/τ. (3.3)

Hence, (3.1) follows from (3.2) and (3.3). Obviously, the constant C in (3.1) is independent of τ .

Lemma 3.2 For the multiplier Gk (k ∈ Z), b ∈ BMO(Rn), and any fixed 0 < τ < 1/2, we have

|Gkb(x)−Gkb(y)| ≤ C 2kτ

τ
|x− y|τ‖b‖BMO, (3.4)

where C is independent of k and τ.
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Proof. Note that Iτ (I−1
τ f) = f, we have

Gkb(x) = γ(τ)

∫
Rn

I−1
τ (Gkb)(z)

|x− z|n−τ
dz.

Hence

|Gkb(x)−Gkb(y)| =

∣∣∣∣γ(τ)

∫
Rn
I−1
τ (Gkb)(z)

(
1

|x− z|n−τ
− 1

|y − z|n−τ

)
dz

∣∣∣∣
≤ γ(τ)‖I−1

τ (Gkb)‖L∞
∫
Rn

∣∣∣∣ 1

|x− z|n−τ
− 1

|y − z|n−τ

∣∣∣∣ dz
= γ(τ)‖I−1

τ (Gkb)‖L∞
∫
Rn

∣∣∣∣ 1

|x− y + z|n−τ
− 1

|z|n−τ

∣∣∣∣ dz.
(3.5)

We first show that ∥∥∥∥ 1

|x− y + ·|n−τ
− 1

| · |n−τ

∥∥∥∥
L1

≤ Cτ−1|x− y|τ . (3.6)

In fact, ∫
Rn

∣∣∣∣ 1

|x− y + z|n−τ
− 1

|z|n−τ

∣∣∣∣ dz
=

∫
|z|≤2|x−y|

∣∣∣∣ 1

|x− y + z|n−τ
− 1

|z|n−τ

∣∣∣∣ dz +

∫
|z|>2|x−y|

∣∣∣∣ 1

|x− y + z|n−τ
− 1

|z|n−τ

∣∣∣∣ dz
≤
∫
|z|≤3|x−y|

1

|z|n−τ
dz +

∫
|z|≤2|x−y|

1

|z|n−τ
dz + C

∫
|z|>2|x−y|

|x− y|
|z|n−τ+1

dz

≤ C |x− y|
τ

τ
,

where C is independent of τ. By (3.5), (3.6) and (3.1), we get

|Gkb(x)−Gkb(y)| ≤ C|x− y|τ‖I−1
τ (Gkb)‖L∞ , (3.7)

where C is independent of τ. We now estimate ‖I−1
τ (Gkb)‖L∞ . Since Gk∆ub = 0 for u ≥ k + 1, we have

‖I−1
τ (Gkb)‖L∞ =

∥∥∥∥I−1
τ Gk

(∑
u∈Z

∆ub
)∥∥∥∥
L∞
≤

∑
u≤k+1

∥∥Gk(I−1
τ ∆ub)

∥∥
L∞
≤

∑
u≤k+1

∥∥I−1
τ ∆ub

∥∥
L∞

. (3.8)

Taking a radial function ψ̃ ∈ S (Rn) such that supp(ψ̃) ⊂ {1/4 ≤ |x| ≤ 4} and ψ̃ = 1 in {1/2 ≤ |x| ≤ 2}.

Then we have

̂I−1
τ ∆ub(ξ) = 2uτ ψ̃(2−uξ)|2−uξ|τ ∆̂ub(ξ).

Set a function h by ĥ(ξ) = ψ̃(ξ)|ξ|τ . Then

I−1
τ ∆ub(x) = 2uτ

∫
Rn

2unh(2u(x− y))∆ub(y) dy.

So we have

‖I−1
τ ∆ub‖L∞ ≤ 2uτ‖2unh(2u·)‖L1‖∆ub‖L∞ = 2uτ‖h‖L1‖∆ub‖L∞ .

Thus, if there exists a constant C > 0, independent of τ, such that

‖h‖L1 ≤ C, (3.9)
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then by (3.7)-(3.8), we have

|Gkb(x)−Gkb(y)| ≤ C|x− y|τ
∑

u≤k+1

2uτ‖∆ub‖L∞

≤ C|x− y|τ2kτ sup
u∈Z
‖∆ub‖L∞

∑
u≤k+1

2(u−k)τ .

Since for some 0 < τ < 1,

∑
u≤k+1

2(u−k)τ =

∞∑
j=−1

2−jτ =
2τ

1− 2−τ
=

22τ

2τ − 1
=

22τ

τ2θτ
<
C

τ
, for 0 < τ < 1/2,

where C is independent of τ. Using the fact (see [22, p.615])

sup
u∈Z
‖∆ub‖L∞ ≤ Cn‖b‖BMO, (3.10)

we have

|Gkb(x)−Gkb(y)| ≤ C |x−y|
τ2kτ

τ ‖b‖BMO,

where C is independent of k and τ. Thus, to finish the proof of Lemma 3.2, it remains to show (3.9). In

fact,

‖h‖L1 =

∫
|x|<1

|h(x)|dx+

∫
|x|≥1

|h(x)|dx ≤ Cn
(
‖h‖L2 + ‖| · |nh(·)‖L2

)
:= Cn(I1 + I2).

Since supp(ψ̃) ⊂ {1/4 ≤ |ξ| ≤ 4} and 0 < δ < 1/2, we get

I1 = ‖ψ̃(ξ)|ξ|τ‖L2 ≤ C,

where C is independent of τ. Thus, to get (3.9), we need only verify that I2 ≤ C. To do this, let

us recall some notations about the multi-index. For a multi-index α = (α1, . . . , αn) ∈ Zn+, denote

∂αf = ∂α1
1 . . . ∂αnn f, |α| = α1 + · · ·+ αn and xα = xα1

1 . . . xαnn for x ∈ Rn. By [22, p.425], we know that

(1 + |ξ|2)n/2 =
∑
|α|≤n

n!

α1! . . . αn!
ξα

ξα

(1 + |ξ|2)n/2

and the function mα(ξ) = ξα

(1+|ξ|2)n/2
is an Lp (1 < p <∞) multiplier whenever |α| ≤ n. Hence

(
(1 + |ξ|2)n/2h(ξ)

)∨
=
∑
|α|≤n

Cα,n(mα(ξ)ξαh(ξ))∨ = C
∑
|α|≤n

Cα,n(mα(ξ)∂̂αȟ(ξ))∨,

where ∨ denote the inverse Fourier transform. Applying the equation above, we get

I2 ≤ C‖(1 + |ξ|2)n/2h(ξ)‖L2 = ‖((1 + |ξ|2)n/2h(ξ))∨‖L2

≤ C
∑
|α|≤n

Cα,n‖∂̂αȟ‖L2

= C
∑
|α|≤n

Cα,n‖∂αȟ‖L2 = C
∑
|α|≤n

Cα,n‖∂α(ψ̃(ξ)|ξ|τ )‖L2 .

Notice that

∂α(ψ̃(ξ)|ξ|τ ) =
∑
β≤α

Cβ1
α1
. . . Cβnαn(∂βψ̃(ξ))(∂α−β(|ξ|τ )), (3.11)

where the sum in (3.11) is taken over all multi-indices β with 0 ≤ βj ≤ αj for all 1 ≤ j ≤ n. Trivial

computations show that there exists C > 0, independent of τ , such that |∂α−β(|ξ|τ )| ≤ C for 1/4 < |ξ| < 4
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and 0 < τ < 1/2. Further, by ψ̃ ∈ C∞0 (Rn), then |∂βψ̃(ξ)| ≤ C. So we get |∂α(ψ(ξ)|ξ|τ )| ≤ C. From this

we get

I2 ≤
∑
|α|≤n

Cα,n‖∂α(ψ(ξ)|ξ|τ )‖L∞
(∫

1/4≤|ξ|≤4

dξ

)1/2

≤ C,

where C is dependent only on n, but independent of τ. This completes the estimate of (3.9) and Lemma

3.2 follows.

Lemma 3.3 (see [27]). Let φ ∈ S (Rn) be a radial function such that suppφ ⊂ {1/2 ≤ |ξ| ≤ 2}

and
∑
l∈Z φ

3(2−lξ) = 1 for |ξ| 6= 0. Define the multiplier operator Sl by Ŝlf(ξ) = φ(2−lξ)f̂(ξ), S2
l

by S2
l f = Sl(Slf). For b ∈ BMO(Rn), denote by [b, Sl](respectively, [b, S2

l ] ) the commutator of Sl

(respectively, S2
l ). Then for 1 < p <∞ and f ∈ Lp(Rn), we have

(i)

∥∥∥∥(∑
l∈Z
|[b, Sl](f)|2

)1/2∥∥∥∥
Lp
≤ C(n, p)‖b‖BMO‖f‖Lp ;

(ii)

∥∥∥∥(∑
l∈Z
|[b, S2

l ](f)|2
)1/2∥∥∥∥

Lp
≤ C(n, p)‖b‖BMO‖f‖Lp ;

(iii)

∥∥∥∥∣∣∑
l∈Z

[b, Sl](fl)
∣∣∥∥∥∥
Lp
≤ C(n, p)‖b‖BMO

∥∥∥∥(∑
l∈Z
|fl|2

)1/2∥∥∥∥
Lp
, {fl} ∈ Lp(l2).

Lemma 3.4 (see [26]). Let mσ ∈ C∞0 (Rn)(0 < σ < ∞) be a family of multipliers such that

supp(mσ) ⊂ {|ξ| ≤ 2σ}, and for some constants C, 0 < A ≤ 1/2, and α > 0,

‖mσ‖L∞ ≤ C min{Aσ, log−α−1(2 + σ)}, ‖∇mσ‖L∞ ≤ C.

Let Tσ be the multiplier operator defined by

T̂σf(ξ) = mσ(ξ)f̂(ξ).

For b ∈ BMO, denote by [b, Tσ] the commutator of Tσ. Then for any fixed 0 < v < 1, there exists a

positive constant C = C(n, v) such that

‖[b, Tσ]f‖L2 ≤ C(Aσ)v log(1/A)‖b‖BMO‖f‖L2 , ifσ < 10/
√
A;

‖[b, Tσ]f‖L2 ≤ C log−(α+1)v+1(2 + σ)‖b‖BMO‖f‖L2 , ifσ ≥ 10/
√
A;

Similar to the proof of Lemma 3.4, it is easy to get

Lemma 3.5 Let mσ ∈ C∞0 (Rn)(0 < σ <∞) be a family of multipliers such that supp(mσ) ⊂ {|ξ| ≤

2σ}, and for some constants C, 0 < A ≤ 1/2, and α > 0, j ∈ N

‖mσ‖L∞ ≤ C min{A2−jσ, log−α−1(2 + 2jσ)}, ‖∇mσ‖L∞ ≤ C2j .

Let Tσ be the multiplier operator defined by

T̂σf(ξ) = mσ(ξ)f̂(ξ).

For b ∈ BMO, denote by [b, Tσ] the commutator of Tσ. Then for any fixed 0 < v < 1, there exists a

positive constant C = C(n, v),0 < β < 1 such that

‖[b, Tσ]f‖L2 ≤ C2−βj(Aσ)v log(1/A)‖b‖BMO‖f‖L2 , ifσ < 10/
√
A;
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‖[b, Tσ]f‖L2 ≤ C log−(α+1)v+1(2 + 2jσ)‖b‖BMO‖f‖L2 , ifσ ≥ 10/
√
A;

Lemma 3.6. For any j ∈ Z, let Kj(x) = Ω(x)
|x|n χ{2j<|x|≤2j+1}(x). Suppose Ω ∈ L1(Sn−1) satisfying

(1.1). Then for 1 < p <∞, the following vector valued inequality∥∥∥∥(∑
j∈Z
||Kj | ∗ |fj ||2

)1/2∥∥∥∥
Lp
≤ Cp‖Ω‖L1

∥∥∥∥(∑
j∈Z
|fj |2

)1/2∥∥∥∥
Lp

holds for any {fj} in Lp(l2).

Proof. Note that for Ω ∈ L1(Sn−1) and any local integrable function f on Rn, we have

σ∗(f)(x) := sup
j∈Z
||Kj | ∗ f(x)| ≤ CMΩf(x) for any x ∈ Rn,

where

MΩf(x) = sup
r>0

1

rn

∫
|x−y|<r

|Ω(x− y)||f(y)| dy. (3.12)

By the Lq boundedness of MΩ for all q > 1 with Ω ∈ L1(Sn−1), σ∗ is also a bounded operator on Lq(Rn)

for all q > 1 with Ω ∈ L1(Sn−1). Thus, by applying Lemma in [15, p.544], we know that, for 1 < p <∞,

the vector valued inequality (3.12) holds.

Lemma 3.7. For any j ∈ Z, define the operator Tj by Tjf = Kj∗f, where Kj(x) = Ω(x)
|x|n χ{2j<|x|≤2j+1}(x).

Denote by [b, Sl−jTjS
2
l−j ] the commutator of Sl−jTjS

2
l−j . Suppose Ω ∈ L1(Sn−1) satisfying (1.1). Then

for any fixed 0 < τ < 1/2, b ∈ BMO(Rn), 1 < p <∞,

∥∥∥∥∑
j∈Z

[b, Sl−jTjS
2
l−j ]f

∥∥∥∥
Lp
≤ C‖b‖BMO max{2τl

τ
, 2}‖Ω‖L1‖f‖Lp , (3.13)

where C is independent of τ and l.

Proof. For any j, l ∈ Z, we may write

[b, Sl−jTjS
2
l−j ]f = [b, Sl−j ](TjS

2
l−jf) + Sl−j [b, Tj ](S

2
l−jf) + Sl−jTj([b, S

2
l−j ]f).

Thus, ∥∥∥∥∑
j∈Z

[b, Sl−jTjS
2
l−j ]f

∥∥∥∥
Lp

≤
∥∥∥∑
j∈Z

[b, Sl−j ](TjS
2
l−jf)

∥∥∥
Lp

+
∥∥∥∑
j∈Z

Sl−jTj([b, S
2
l−j ]f)

∥∥∥
Lp

+
∥∥∥∑
j∈Z

Sl−j [b, Tj ](S
2
l−jf)

∥∥∥
Lp

:= L1 + L2 + L3.

(3.14)

Below we shall estimate Li for i = 1, 2, 3, respectively. For L1, by Lemma 3.3 (iii), Lemma 3.6 and the

Littlewood-Paley theory, we have

L1 ≤ C‖b‖BMO

∥∥∥(∑
j∈Z
|TjS2

l−jf |2
)1/2∥∥∥

Lp

≤ C‖Ω‖L1‖b‖BMO

∥∥∥(∑
j∈Z
|S2
j f |2

)1/2∥∥∥
Lp
≤ C‖Ω‖L1‖b‖BMO‖f‖Lp .

Similarly, we have L2 ≤ C‖Ω‖L1‖b‖BMO‖f‖Lp .
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Hence, by (3.14), to show (3.12) it remains to give the estimate of L3. We will apply the Bony

paraproduct to do this. By (2.2), we have

[b, Tj ]S
2
l−jf(x) = b(x)(TjS

2
l−jf)(x)− Tj(bS2

l−jf)(x)

= [π(TjS2
l−jf)(b)(x)− Tj(π(S2

l−jf)(b))(x)] + [R(b, TjS
2
l−jf)(x)− Tj(R(b, S2

l−jf))(x)]

+[πb(TjS
2
l−jf)(x)− Tj(πb(S2

l−jf))(x)].

Thus

L3 ≤
∥∥∥∑
j∈Z

Sl−j
[
π(TjS2

l−jf)(b)− Tj(π(S2
l−jf)(b))

]∥∥∥
Lp

+
∥∥∥∑
j∈Z

Sl−j
[
R(b, TjS

2
l−jf)− Tj(R(b, S2

l−jf))
]∥∥∥
Lp

+
∥∥∥∑
j∈Z

Sl−j
[
πb(TjS

2
l−jf)− Tj(πb(S2

l−jf))
]∥∥∥
Lp

:= M1 +M2 +M3.

(3.15)

(a) The estimate of M1. For M1, by ∆iSl−jg = 0 for g ∈ S ′(Rn) when |i− (l − j)| ≥ 3, we get

π(TjS2
l−jf)(b)(x)− Tj(π(S2

l−jf)(b))(x)

=
∑

|i−(l−j)|≤2

{(Tj∆iS
2
l−jf)(x)(Gi−3b)(x)− Tj [(∆iS

2
l−jf)(Gi−3b)](x)}

=
∑

|i−(l−j)|≤2

[Gi−3b, Tj ](∆iS
2
l−jf)(x).

(3.16)

Note that

|[Gi−3b, Tj ](∆iS
2
l−jf)(x)| =

∣∣∣ ∫
2j≤|x−y|<2j+1

Ω(x− y)

|x− y|n
(Gi−3b(x)−Gi−3b(y))∆iS

2
l−jf(y)dy

∣∣∣
≤ C

∫
2j≤|x−y|<2j+1

|Ω(x− y)|
|x− y|n

|Gi−3b(x)−Gi−3b(y)||∆iS
2
l−jf(y)|dy.

(3.17)

By Lemma 3.2, we have

|[Gi−3b, Tj ]∆iS
2
l−jf(x)| ≤ C 2iτ

τ
‖b‖BMO

∫
2j≤|x−y|<2j+1

|Ω(x− y)|
|x− y|n

|x− y|τ |∆iS
2
l−jf(y)|dy

≤ C 2(i+j)τ

τ
‖b‖BMO

∫
2j≤|x−y|<2j+1

|Ω(x− y)|
|x− y|n

|∆iS
2
l−jf(y)|dy

= C
2(i+j)τ

τ
‖b‖BMOT|Ω|,j(|∆iS

2
l−jf |)(x),

(3.18)

where

T|Ω|,jf(x) =

∫
2j≤|x−y|<2j+1

|Ω(x− y)|
|x− y|n

f(y)dy.

Then, by (3.16), (3.18) and applying Lemma 3.6, (2.1) and the Littlewood-Paley theory, we have that,

for any fixed 0 < τ < 1/2,

M1 ≤ C 2τl

τ
‖b‖BMO

∑
|k|≤2

∥∥∥(∑
j∈Z
|T|Ω|,j(|∆l−j+kS

2
l−jf |)|2

)1/2∥∥∥
Lp

≤ C 2τl

τ
‖b‖BMO‖Ω‖L1

∑
|k|≤2

∥∥∥(∑
j∈Z
|∆j+kS

2
j f |2

)1/2∥∥∥
Lp

≤ C 2τl

τ
‖b‖BMO‖Ω‖L1

∥∥∥(∑
j∈Z
|Sjf |2

)1/2∥∥∥
Lp

≤ C 2τl

τ
‖b‖BMO‖Ω‖L1‖f‖Lp ,

(3.19)
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where C is independent of l and τ.

(b) The estimate of M2. Since |k| ≤ 2, ∆i+kSl−jg = 0 for g ∈ S
′
(Rn) when |i− (l − j)| ≥ 8. Thus

R(b, TjSl−jf)− Tj(R(b, Sl−jf))(x)

=
∑
i∈Z

∑
|k|≤2

(∆ib)(x)(Tj∆i+kSl−jf)(x)− Tj
(∑
i∈Z

∑
|k|≤2

(∆ib)(∆i+kSl−jf)
)

(x)

=

2∑
k=−2

∑
|i−(l−j)|≤7

(
(∆ib)(x)(Tj∆i+kSl−jf)(x)− Tj

(
(∆ib)(∆i+kSl−jf)

)
(x)

)

=

2∑
k=−2

∑
|i−(l−j)|≤7

[∆ib, Tj ](∆i+kSl−jf)(x).

By the equality above and using Lemma 3.6, (2.1), (3.10) and the Littlewood-Paley theory, we have

M2 ≤ C‖Ω‖L1 sup
i∈Z
‖∆i(b)‖L∞

∑
|k|≤7

∥∥∥(∑
j∈Z
|Tj,|Ω|(|∆l−j+kSl−jf |)|2

)1/2∥∥∥
Lp

≤ C‖b‖BMO‖Ω‖L1

∥∥∥(∑
j∈Z
|S2
j f |2

)1/2∥∥∥
Lp

≤ C‖b‖BMO‖Ω‖L1‖f‖Lp .

(3.20)

(c) The estimate of M3. Finally, we give the estimate of M3. Note that Sl−j
(
(∆ig)(Gi−3h)

)
= 0 for

g, h ∈ S
′
(Rn) if |i− (l − j)| ≥ 5. Thus we get

Sl−j
(
πb(TjSl−jf)− Tj(πb(Sl−jf))

)
= Sl−j

(∑
i∈Z

(∆ib)(Gi−3TjSl−jf)− Tj
(∑
i∈Z

(∆ib)(Gi−3Sl−jf)
))

(x)

=
∑

|i−(l−j)|≤4

{
Sl−j

(
(∆ib)(Gi−3TjSl−jf)

)
(x)− Sl−jTj

(
(∆ib)(Gi−3Sl−jf)

)
(x)
}

=
∑

|i−(l−j)|≤4

Sl−j
(
[∆ib, Tj ](Gi−3Sl−jf)

)
.

Applying Proposition 5.1.4 in [22, p.343], it is easy to see that∥∥∥(∑
j∈Z
|Gj+kSjfj |2

)1/2∥∥∥
Lp
≤
∥∥∥(∑

j∈Z
|fj |2

)1/2∥∥∥
Lp

for k ∈ [−10, 10].

Thus, by the Littlewood-Paley theory, Lemma 3.6 and (3.10) we get

M3 ≤ C sup
i∈Z
‖∆i(b)‖L∞

∑
|k|≤4

∥∥∥(∑
j∈Z
|T|Ω|,j(|Gl−j+k−3Sl−jf |)|2

)1/2∥∥∥
Lp

≤ C‖b‖BMO‖Ω‖L1

∥∥∥(∑
j∈Z
|Sjf |2

)1/2∥∥∥
Lp

≤ C‖b‖BMO‖Ω‖L1‖f‖Lp .

(3.21)

By (3.15), (3.19)-(3.21), we get

L3 ≤ C max{2, 2τl

τ
}‖b‖BMO‖Ω‖L1‖f‖Lp for l ∈ Z.

Combining this with (3.14), we complete the proof of (3.13).
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4 Proof of Theorem 1

Let φ ∈ C∞0 (Rn) be a radial function such that 0 ≤ φ ≤ 1, suppφ ⊂ {1/2 ≤ |ξ| ≤ 2} and∑
l∈Z

φ3(2−lξ) = 1, |ξ| 6= 0.

Define the multiplier operator Sl by

Ŝlf(ξ) = φ(2−lξ)f̂(ξ).

Let Kj(x) = Ω(x)
|x|n χ{2j<|x|≤2j+1}. Define the operator

Tjf(x) = Kj ∗ f(x) =

∫
2j<|y|≤2j+1

Ω(y)

|y|n
f(x− y) dy,

and the multiplier T lj by T̂ ljf(ξ) = ̂TjSl−jf(ξ) = φ(2j−lξ)K̂j(ξ)f̂(ξ). With the notations above, it is easy

to see that

[b, TΩ]f(x) =
∑
l∈Z

∑
j∈Z

[b, Sl−jTjS
2
l−j ]f(x) =

∑
l∈Z

∑
j∈Z

[b, Sl−jT
l
jSl−j ]f(x) :=

∑
l∈Z

Vlf(x),

where Vlf(x) =
∑
j∈Z

[b, Sl−jT
l
jSl−j ]f(x). Then by the Minkowski inequality, we get

‖[b, TΩ]f‖Lp ≤
∥∥∥∥ [log

√
2]∑

l=−∞

Vlf

∥∥∥∥
Lp

+

∥∥∥∥ ∞∑
l=[log

√
2]+1

Vlf

∥∥∥∥
Lp
. (4.1)

Now, we will estimate the two cases respectively.

Case 1. The estimate of

∥∥∥∥ [log
√

2]∑
l=−∞

Vlf

∥∥∥∥
Lp
.

Since Ω ∈ L1(Sn−1) satisfies (1.1) and (1.2), by a well-known Fourier transform estimate of Duoandikoetx-

ea and Rubio de Francia (See [15, p.551-552]), it is easy to show that

|K̂j(ξ)| ≤ C‖Ω‖L1 |2jξ|.

A trivial computation gives that

‖∇K̂j‖L∞ ≤ C2j‖Ω‖L1 .

Set mj(ξ) = K̂j(ξ), m
l
j(ξ) = mj(ξ)φ(2j−lξ), and recall that T lj by

T̂ ljf(ξ) = ml
j(ξ)f̂(ξ).

Straightforward computations lead to

‖ml
j(2
−j ·)‖L∞ ≤ C‖Ω‖L12l, ‖∇ml

j(2
−j ·)‖L∞ ≤ C‖Ω‖L1 ,

supp{ml
j(2
−jξ)} ⊂ {|ξ| ≤ 2l+2}.

Let T̃ lj be the operator defined by ̂̃
T ljf(ξ) = ml

j(2
−jξ)f̂(ξ).

14



Denote by T lj;b,1f = [b, T lj ]f and T lj;b,0f = T ljf. Similarly, denote by T̃ lj;b,1f = [b, T̃ lj ]f and T̃ lj;b,0f = T̃ ljf.

Thus via the Plancherel theorem and Lemma 3.4 states that for any fixed 0 < v < 1, k ∈ {0, 1},

‖T̃ lj;b,kf‖L2 ≤ C‖b‖kBMO‖Ω‖L12vl‖f‖L2 , l ≤ [log
√

2].

Dilation-invariance says that

‖T lj;b,kf‖L2 ≤ C‖b‖kBMO‖Ω‖L12vl‖f‖L2 , l ≤ [log
√

2]. (4.2)

First, we will give the L2-norm estimate of Vlf by using the inequality (4.2). Recalling that Vlf(x) =∑
j∈Z

[b, Sl−jT
l
jSl−j ]f(x), for any j, l ∈ Z, we may write

[b, Sl−jT
l
jSl−j ]f = [b, Sl−j ](T

l
jSl−jf) + Sl−j [b, T

l
j ](Sl−jf) + Sl−jT

l
j([b, Sl−j ]f).

Thus,

‖Vlf‖L2 ≤
∥∥∥∑
j∈Z

[b, Sl−j ](T
l
jSl−jf)

∥∥∥
L2

+
∥∥∥∑
j∈Z

Sl−jT
l
j([b, Sl−j ]f)

∥∥∥
L2

+
∥∥∥∑
j∈Z

Sl−j [b, T
l
j ](Sl−jf)

∥∥∥
L2

:= Q1 +Q2 +Q3.

(4.3)

For Q1, by Lemma 3.3(iii), (4.2) for k = 0 and the Littlewood-Paley theory, we get

Q1 ≤ C‖b‖BMO

∥∥∥(∑
j∈Z
|T ljSl−jf |2

)1/2∥∥∥
L2

≤ C‖b‖BMO2vl‖Ω‖L1

∥∥∥(∑
j∈Z
|Sl−jf |2

)1/2∥∥∥
L2

≤ C‖b‖BMO2vl‖Ω‖L1‖f‖L2 .

(4.4)

For Q2, by the Littlewood-Paley theory, (4.2) for k = 0 and Lemma 3.3(i), we get

Q2 ≤ C
∥∥∥(∑

j∈Z
|T lj([b, Sl−j ]f)|2

)1/2∥∥∥
L2

≤ C2vl‖Ω‖L1

∥∥∥(∑
j∈Z
|[b, Sl−j ]f |2

)1/2∥∥∥
L2

≤ C‖b‖BMO2vl‖Ω‖L1‖f‖L2 .

(4.5)

About Q3, by(4.2) for k = 1 and the Littlewood-Paley theory, we have

Q3 ≤ C
∥∥∥(∑

j∈Z
|[b, T lj ](Sl−jf)|2

)1/2∥∥∥
L2

≤ C2vl‖Ω‖L1

∥∥∥(∑
j∈Z
|Sl−jf |2

)1/2∥∥∥
L2

≤ C‖b‖BMO2vl‖Ω‖L1‖f‖L2 .

(4.6)

Combining (4.4) with (4.5) and (4.6), we have

‖Vlf‖L2 ≤ C‖b‖BMO2vl‖Ω‖L1‖f‖L2 , l ≤ [log
√

2]. (4.7)

15



On the other hand, since T ljf(x) = TjSl−jf(x), then Vlf(x) =
∑
j∈Z

[b, Sl−jTjS
2
l−j ]f(x). Applying Lemma

3.7, we get for 1 < p <∞

‖Vlf‖Lp ≤ C‖b‖BMO‖Ω‖L1‖f‖Lp , l ≤ [log
√

2]. (4.8)

Interpolating between (4.7) and (4.8), there exists a constant 0 < β < 1, such that

‖Vlf‖Lp ≤ C2βvl‖Ω‖L1‖b‖BMO‖f‖Lp , l ≤ [log
√

2]. (4.9)

Then by the Minkowski inequality, we get for 1 < p <∞∥∥∥∥ [log
√

2]∑
l=−∞

Vlf

∥∥∥∥
Lp

≤
[log
√

2]∑
l=−∞

‖Vlf‖Lp

≤ C
[log
√

2]∑
l=−∞

2βvl‖b‖BMO‖Ω‖L1‖f‖Lp

≤ C‖b‖BMO‖Ω‖L1‖f‖Lp .

(4.10)

Case 2. The estimate of

∥∥∥∥ ∞∑
l=1+[log

√
2]

Vlf

∥∥∥∥
Lp
.

Recalling that Vlf(x) =
∑
j∈Z

[b, Sl−jTjS
2
l−j ]f(x). We will give the delicate L2 norm of Vlf and the

Lp (1 < p <∞) norm of Vlf respectively. It is easy to see that if Ω ∈ Fα(Sn−1) for α > 1 satisfies (1.1)

and (1.2),

|K̂j(ξ)| ≤ C log−α−1(|2jξ|+ 2), ‖∇K̂j‖L∞ ≤ C2j .

Set mj(ξ) = K̂j(ξ), m
l
j(ξ) = φ(2j−lξ)mj(ξ). Let T lj be the operator defined by T̂ ljf(ξ) = ml

j(ξ)f̂(ξ).

Straightforward computations lead to

‖ml
j(2
−j ·)‖L∞ ≤ C log−α−1(2 + 2l), ‖∇ml

j(2
−j ·)‖L∞ ≤ C,

supp{ml
j(2
−jξ)} ⊂ {|ξ| ≤ 2l+2}.

Let T̃ lj be the operator defined by ̂̃
T ljf(ξ) = ml

j(2
−jξ)f̂(ξ).

Denote by T lj;b,1f = [b, T lj ]f and T lj;b,0f = T ljf. Similarly, denote by T̃ lj;b,1f = [b, T̃ lj ]f and T̃ lj;b,0f = T̃ ljf.

Thus via the Plancherel theorem and Lemma 3.4 with σ = 2l states that for any fixed 0 < v < 1,

k ∈ {0, 1},

‖T̃ lj;b,kf‖L2 ≤ C‖b‖kBMOC log(−α−1)v+1(2 + 2l)‖f‖L2 , l ≥ 1 + [log
√

2]. (4.11)

Dilation-invariance says that

‖T lj;b,kf‖L2 ≤ C‖b‖kBMO log(−α−1)v+1(2 + 2l)‖f‖L2 , l ≥ 1 + [log
√

2]. (4.12)

Applying (4.12), Lemma 3.3 and the Littlewood-Paley theory, similar to the proof of (4.7), we get

‖Vlf‖L2 ≤ C‖b‖BMO log(−α−1)v+1(2 + 2l)‖f‖L2 , l ≥ 1 + [log
√

2], (4.13)
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On the other hand, by Lemma 3.7 , for any fixed 0 < τ < 1/2, 1 < p <∞,

‖Vlf‖Lp ≤ C‖b‖BMO
2τl

τ
‖Ω‖L1‖f‖Lp , l ≥ 1 + [log

√
2],

where C is independent of τ and l. Take τ = 1/l, we get

‖Vlf‖Lp ≤ Cl‖b‖BMO‖Ω‖L1‖f‖Lp , l ≥ 1 + [log
√

2],

where C is independent of l. Which says that for any r satisfying 1 < r <∞, we have

‖Vlf‖Lr ≤ Cl‖b‖BMO‖f‖Lr , l ≥ 1 + [log
√

2]. (4.14)

Now for any p ≥ 2, we take r sufficient large such that r > p. Using the Riesz-Thorin interpolation

theorem between (4.13) and (4.14), we have that for any l ≥ 1 + [log
√

2],

‖Vlf‖Lp ≤ C‖b‖BMOl
1−θ log((−α−1)v+1)θ(2 + 2l)‖f‖Lp ,

where θ = 2(r−p)
p(r−2) . We can see that if r 7→ ∞, then θ goes to 2/p and log((−α−1)v+1)θ(2 + 2l) goes to

log((−α−1)v+1)2/p(2 + 2l). Therefore, we get

‖Vlf‖Lp ≤ C‖b‖BMOl
1−2/p log((−α−1)v+1) 2

p (2 + 2l)‖f‖Lp , l ≥ 1 + [log
√

2], p ≥ 2. (4.15)

Then by the Minkowski inequality, for 2 ≤ p < α+ 1, we get∥∥∥∥ ∞∑
l=1+[log

√
2]

Vlf

∥∥∥∥
Lp

≤ C‖b‖BMO

∞∑
l=1+[log

√
2]

l1−2/pl((−α−1)v+1) 2
p ‖f‖Lp

≤ C‖b‖BMO‖f‖Lp .

(4.16)

If 1 < p < 2, by duality, we get for p > α+1
α∥∥∥∥ ∞∑

l=1+[log
√

2]

Vlf

∥∥∥∥
Lp

≤ C‖b‖BMO‖f‖Lp . (4.17)

Combining (4.16) with (4.17), we get for α+1
α < p < α+ 1,∥∥∥∥ ∞∑

l=1+[log
√

2]

Vlf

∥∥∥∥
Lp

≤ C‖b‖BMO‖f‖Lp .

This completes the proof of Theorem 1.

5 Proof of Theorem 2

Let α > 2, Kj and the operator Tj be the same as in the proof of Theorem 1. Define

[b, T sΩ]f(x) =

∫
|x−y|>2s

(b(x)− b(y))
Ω(x− y)

|x− y|n
f(y) dy

=

∞∑
j=s

∫
2j<|x−y|≤2j+1

(b(x)− b(y))
Ω(x− y)

|x− y|n
f(y) dy

=

∞∑
j=s

[b, Tj ]f(x),
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where

[b, Tj ]f(x) =

∫
2j≤|x−y|≤2j+1

(b(x)− b(y))
Ω(x− y)

|x− y|n
f(y) dy. (5.1)

So, we get

sup
s>0
|[b, T sΩ]f(x)| ≤ sup

s∈Z

∣∣∣∣ ∞∑
j=s

[b, Tj ]f(x)

∣∣∣∣,
Thus, to prove Theorem 2, it suffices to estimate the Lp norm of sup

s∈Z

∣∣∣∣ ∞∑
j=s

[b, Tj ]f(x)

∣∣∣∣. Taking a radial

Schwartz function Φ such that Φ̂(ξ) = 1 for |ξ| ≤ 1 and Φ̂(ξ) = 0 for |ξ| > 2, and define Φs by

Φ̂s(ξ) = Φ̂(2sξ). Write

∞∑
j=s

[b, Tj ]f(x) =

[
Φs ∗

(
[b, TΩ]f −

s−1∑
j=−∞

[b, Tj ]f

)
(x)

]
+

[ ∞∑
j=s

[b, Tj ]f(x)− Φs ∗
( ∞∑
j=s

[b, Tj ]f

)
(x)

]
:= Lsf(x) + Jsf(x).

Observed that

Φs ∗
( s−1∑
j=−∞

[b, Tj ]f

)
(x) = [b,Φs ∗

s−1∑
j=−∞

Kj ]f(x)− [b,Ws]

( s−1∑
j=−∞

Tjf

)
(x),

where Ws is a convolution operator with its convolution kernel Φs. Observe that∣∣∣∣Φs ∗ s−1∑
j=−∞

Kj(x)

∣∣∣∣ ≤ C‖Ω‖L12−ns/(1 + |2−sx|n+1)

(see [15]) and

s−1∑
j=−∞

Tjf(x) = TΩf(x)−
∞∑
j=s

Tjf(x). It follows that

sup
s∈Z
|Lsf(x)| ≤ CM([b, TΩ]f)(x) + C[b,M ]f(x) + [b,M ](TΩf)(x) + [b,M ](T ∗Ωf)(x).

Then by Theorem 1, the Lp ( α
α−1 < p < α) boundedness of TΩ, T ∗Ω with kernel function Ω ∈ Fα for α > 2

(see [23]) and [b,M ] (see [21]), we get for α
α−1 < p < α,

‖ sup
s∈Z
|Lsf |‖Lp ≤ C‖b‖BMO‖f‖Lp . (5.2)

To estimate sup
s∈Z
|Jsf(x)|, write

∞∑
j=s

[b, Tj ]f(x)− Φs ∗
( ∞∑
j=s

[b, Tj ]f

)
(x) =

∞∑
j=s

[b, Tj ]f(x)− [b,Φs ∗
∞∑
j=s

Kj ]f(x) + [b,Ws]

( ∞∑
j=s

Tjf

)
(x).

Thus we get

sup
s∈Z
|Jsf(x)| ≤ sup

s∈Z

∣∣∣ ∞∑
j=s

[b, (δ − Φs) ∗Kj ]f(x)
∣∣∣+ [b,M ](T ∗Ωf)(x),

where δ is Dirac mass at the origin. Since for α
α−1 < p < α, (see [23])

‖[b,M ](T ∗Ωf)‖Lp ≤ C‖b‖BMO‖f‖Lp . (5.3)
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Thus, to give the estimate of Lp norm for the term sups∈Z |Jsf(x)|, it suffices to give the estimate of Lp

norm for the term sup
s∈Z

∣∣∣ ∞∑
j=s

[b, (δ − Φs) ∗Kj ]f(x)
∣∣∣. Note that

sup
s∈Z

∣∣∣ ∞∑
j=s

[b, (δ − Φs) ∗Kj ]f(x)
∣∣∣ ≤ ∞∑

j=0

sup
s∈Z
|[b, (δ − Φs) ∗Kj+s]f(x)|.

Let Us,jf(x) = (δ − Φs) ∗Ks+j ∗ f and [b, Us,j ]f(x) = [b, (δ − Φs) ∗Ks+j ]f. Then

sup
s∈Z

∣∣∣ ∞∑
j=s

[b, (δ − Φs) ∗Kj ]f(x)
∣∣∣ ≤ ∞∑

j=0

sup
s∈Z
|[b, Us,j ]f(x)|. (5.4)

It is easy to see that

sup
s∈Z
|[b, Us,j ]f(x)|

≤ C sup
s∈Z
|[b, Ts+j ]f(x)|+ C sup

s∈Z

(
Ws|[b, Ts+j ]f + C[b,Ws](Ts+jf)

)
(x)

≤ C sup
s∈Z
|[b, Ts+j ]f(x)|+ CM(sup

s∈Z
|[b, Ts+j ]f |)(x) + C[b,M ](MΩf)(x)

≤ C[b,MΩ]f(x) + CM([b,MΩ]f)(x) + C[b,M ](MΩf)(x).

Applying Theorem 3, the Lp (1 < p < ∞) boundedness of M , MΩ with kernel function Ω ∈ L1(Sn−1)

(see [22]) and [b,M ] (see [21]), we have for α
α−1 < p < α,

‖ sup
s∈Z
|[b, Us,j ]f |‖Lp ≤ C(‖[b,MΩ]f‖Lp + ‖b‖BMO‖MΩf‖Lp) ≤ C‖b‖BMO‖f‖Lp . (5.5)

On the other hand, set

Bs,j(ξ) = (1− Φ̂s(ξ))K̂s+j(ξ), Bls,j(ξ) = (1− Φ̂s(ξ))K̂s+j(ξ)φ(2s−lξ).

Define the operator U ls,j by Û ls,jf(ξ) = Ûs,jf(ξ)φ(2s−lξ), and denote by [b, U ls,j ] the commutator of U ls,j .

Then it is clear that

[b, Us,j ]f(x) =
∑
l∈Z

[b, U ls,jS
2
l−s]f(x).

By the Minkowski inequality, we get

‖ sup
s∈Z
|[b, Us,j ]f |‖L2 ≤

∥∥∥∥(∑
s∈Z
|[b, Us,j ]f |2

)1/2∥∥∥∥
L2

≤
∥∥∥∥(∑

s∈Z
|
∑
l∈Z

[b, U ls,jS
2
l−s]f |2

)1/2∥∥∥∥
L2

≤
∑
l∈Z

∥∥∥∥(∑
s∈Z
|[b, U ls,j ]S2

l−sf |2
)1/2∥∥∥∥

L2

+
∑
l∈Z

∥∥∥∥(∑
s∈Z
|U ls,j [b, S2

l−s]f |2
)1/2∥∥∥∥

L2

:= I1 + I2.

(5.6)

To complete the proof we will estimate each term separately. Denote by U ls,j;b,1f = [b, U ls,j ]f and

U ls,j;b,0f = U ls,jf. Obviously, if we can prove that for any 0 < v < 1, k ∈ {0, 1}, there exists a constant

0 < β < 1, such that

‖U ls,j;b,kf‖L2 ≤ C2−βj‖b‖kBMO2l‖f‖L2 , for l ≤ [log
√

2] (5.7)
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and

‖U ls,j;b,kf‖L2 ≤ C‖b‖kBMO log(−α−1)v+1(2l+j + 2)‖f‖L2 , for l ≥ [log
√

2],+1 (5.7′)

then we may finish the estimate of I1 and I2. We consider first I1. In fact, by (5.7) and (5.7’) for k = 1

and the Littlewood-Paley theory, we get

I1 ≤
[log
√

2]∑
l=−∞

∥∥∥∥(∑
s∈Z
|[b, U ls,j ]S2

l−sf |2
)1/2∥∥∥∥

L2

+

∞∑
l=[log

√
2]+1

∥∥∥∥(∑
s∈Z
|[b, U ls,j ]S2

l−sf |2
)1/2∥∥∥∥

L2

≤ C2−βj‖b‖BMO

( [log
√

2]∑
l=−∞

2l−1

∥∥∥∥(∑
s∈Z
|S2
l−sf |2

)1/2∥∥∥∥
L2

)
+C‖b‖BMO

( ∞∑
l=[log

√
2]+1

log(−α−1)v+1(2l+j + 2)

∥∥∥∥(∑
s∈Z
|S2
l−sf |2

)1/2∥∥∥∥
L2

)
.

Since (l + j)2 ≥ l(j + 1), we get

I1 ≤ C(j + 1)
(−α−1)v+1

2 ‖b‖BMO‖f‖L2 . (5.8)

We will now estimate I2. by (5.7) for k = 0, the Littlewood-Paley theory and Lemma 3.3 (ii), we get

I2 ≤
[log
√

2]∑
l=−∞

∥∥∥∥(∑
s∈Z
|U ls,j [b, S2

l−s]f |2
)1/2∥∥∥∥

L2

+

∞∑
l=[log

√
2]+1

∥∥∥∥(∑
s∈Z
|U ls,j [b, S2

l−s]f |2
)1/2∥∥∥∥

L2

≤ C2−βj
( [log

√
2]∑

l=−∞

2l−1

∥∥∥∥(∑
s∈Z
|[b, S2

l−s]f |2
)1/2∥∥∥∥

L2

)
+C

( ∞∑
l=[log

√
2]+1

log(−α−1)v+1(2l+j + 2)

∥∥∥∥(∑
s∈Z
|[b, S2

l−s]f |2
)1/2∥∥∥∥

L2

)
≤ C(j + 1)

(−α−1)v+1
2 ‖b‖BMO‖f‖L2 .

(5.9)

Combining I1 with I2, we get

‖ sup
s∈Z
|[b, Us,j ]f |‖L2 ≤ C(j + 1)

(−α−1)v+1
2 ‖b‖BMO‖f‖L2 . (5.10)

Interpolating between (5.5) and (5.10), similar to the proof of (4.15), for p ≥ 2, we get

‖ sup
s∈Z
|[b, Us,j ]f |‖Lp ≤ C(j + 1)

2
p

(−α−1)v+1
2 ‖b‖BMO‖f‖Lp . (5.11)

Then by (5.4), we get for 2 ≤ p < α,∥∥∥∥ sup
s∈Z

∣∣∣ ∞∑
j=s

[b, (δ − Φs) ∗Kj ]f(x)
∣∣∣∥∥∥∥
Lp

≤
∞∑
j=0

(j + 1)
2
p

(−α−1)v+1
2 ‖b‖BMO‖f‖Lp

≤ C‖b‖BMO‖f‖Lp .
(5.12)

Similarly, for p < 2, we get

‖ sup
s∈Z
|[b, Us,j ]f |‖Lp ≤ C(j + 1)

2
p′

(−α−1)v+1
2 ‖b‖BMO‖f‖Lp . (5.13)
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Then by (5.4), we get for α
α−1 < p < 2,∥∥∥∥ sup

s∈Z

∣∣∣ ∞∑
j=s

[b, (δ − Φs) ∗Kj ]f(x)
∣∣∣∥∥∥∥
Lp

≤
∞∑
j=0

(j + 1)
2
p′

(−α−1)v+1
2 ‖b‖BMO‖f‖Lp

≤ C‖b‖BMO‖f‖Lp .
(5.14)

This completes the proof of Theorem 2. Hence it remains to prove (5.7) and (5.7’). To this end, define

multiplier Ũ ls,j by
̂̃
U ls,jf(ξ) = Bls,j(2

−sξ)f̂(ξ), and denote by [b, Ũ ls,j ] the commutator of Ũ ls,j . Define

Ũ ls,j;b,1f = [b, Ũ ls,j ]f and Ũ ls,j;b,0f = Ũ ls,jf. Recall that

Bs,j(ξ) = (1− Φ̂s(ξ))K̂s+j(ξ), Bls,j(ξ) = (1− Φ̂s(ξ))K̂s+j(ξ)φ(2s−lξ).

It ie easy to see that

|Bs,j(ξ)| ≤ C2−j |2sξ| for |2sξ| ≤ 1,

|Bs,j(ξ)| ≤ C log−α−1(|2s+jξ|+ 2) for |2sξ| > 1,

|∇Bs,j(ξ)| ≤ C2s2j .

Since supp(Bls,j(2
−sξ)) ⊂ {ξ : 2l−1 ≤ |ξ| ≤ 2l}, we have the following estimates

|Bs,j(2−sξ)| ≤ C2l−j for l ≤ 0

|Bs,j(2−sξ)| ≤ C log−α−1(2l+j + 2) for l > 0,

|∇Bls,j(2−sξ)| ≤ C2j ,

Applying Lemma 3.5 with σ = 2l, A = 1/2 and the Plancherel theory, there exists a constant 0 < β < 1,

such that for any fixed 0 < v < 1, k ∈ {0, 1},

‖Ũ ls,j;b,kf‖L2 ≤ C‖b‖kBMO2−βj2l‖f‖L2 , for l ≤ [log
√

2].

‖Ũ ls,j;b,kf‖L2 ≤ C‖b‖kBMO log(−α−1)v+1(2l+j + 2)‖f‖L2 , for l ≥ [log
√

2] + 1.

Which implies that

‖U ls,j;b,kf‖L2 ≤ C‖b‖kBMO2−βj2l‖f‖L2 , for l ≤ [log
√

2].

‖U ls,j;b,kf‖L2 ≤ C‖b‖kBMO log(−α−1)v+1(2l+j + 2)‖f‖L2 , for l ≥ [log
√

2] + 1,

by dilation invariance. This establishes the proof of (5.7) and (5.7’).
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